Created
December 8, 2023 16:37
-
-
Save abikoushi/a0eaeecfd9e2d50c03cc96605c0e5bd4 to your computer and use it in GitHub Desktop.
posterior density of the mixture normal distribution
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(ggplot2) | |
library(gganimate) | |
logsumexp=function (logx1,logx2){ | |
logx1 + log1p(exp(logx2-logx1)) | |
} | |
llmixnorm <- function(par, y){ | |
a0 <- par[1] | |
b0 <- par[2] | |
theta <- par[3] | |
sum(logsumexp(log(1-a0)+dnorm(y,log = TRUE), log(a0)+dnorm(y,b0,log = TRUE))) + dbeta(a0, theta, theta, log = TRUE) | |
} | |
N <- 100L | |
set.seed(1) | |
y11 <- c(rnorm(N/2),rnorm(N/2,0.5)) | |
ggplot()+ | |
geom_histogram(data=NULL, aes(x=y11), fill="grey70", bins=25)+ | |
theme_bw(14)+labs(x="y", y="count") | |
parms <- expand.grid(a=seq(0.3,0.99,length.out = 200), | |
b=seq(0,1,length.out = 200), | |
theta=seq(0.5,3,by=0.1)) | |
l11 <- apply(parms, 1, llmixnorm, y=y11) | |
dfL11 <- data.frame(parms, value = exp(l11)) | |
ggplot(dfL11,aes(x=b,y=a))+ | |
geom_point(aes(colour=value))+ | |
scale_colour_continuous(type = "viridis")+ | |
labs(title = 'theta: {round(frame_time,2)}') + | |
transition_time(theta)+ | |
theme_bw(14)+theme(legend.position = "none") | |
anim_save("post_mixnorm.gif") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
log marginal likelihood can be calculate as follows: