Created
February 27, 2022 14:53
-
-
Save abikoushi/a60c22b0f2d2403f863cd00990d0b820 to your computer and use it in GitHub Desktop.
ニュートン法(ガンマ分布の最尤推定)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using Distributions | |
using SpecialFunctions | |
using Random | |
using Plots, StatsPlots | |
function Mstep(d::Gamma, y) | |
shp, scl = params(d) | |
rho = log(shp) | |
meanlogy = mean(log,y) | |
#f(x,shp) = -shp*log(scl) + (shp-1)*log(x) - (x/scl) -loggamma(shp) | |
g = shp*log(scl) - shp*meanlogy + digamma(shp)*shp | |
H = shp*log(scl) - shp*meanlogy + trigamma(shp)*shp^2 + digamma(shp)*shp | |
rho -= g/H | |
b = mean(y)/exp(rho) | |
return Gamma(exp(rho), b) | |
end | |
function mynewton(d, y, iter) | |
p = zeros(iter, 2) | |
for i in 1:iter | |
d = Mstep(d, y) | |
p[i,:] .= log.(params(d)) | |
end | |
return p | |
end | |
y = rand(MersenneTwister(12345), Gamma(2.0,2.0), 100) | |
theta = mynewton(Gamma(1.0, 1.0), y, 100) | |
maximum(theta[:,1]) | |
minimum(theta[:,1]) | |
maximum(theta[:,2]) | |
minimum(theta[:,2]) | |
av = -1.5:0.05:3.5 | |
bv = -1.5:0.05:3.5 | |
Xv = repeat(reshape(av, 1, :), length(bv), 1) | |
Yv = repeat(bv, 1, length(av)) | |
Zv = map((a,b) -> exp(mean(y -> logpdf(Gamma(exp(a),exp(b)),y), y)), Xv, Yv) | |
anim = @animate for i in 1:100 | |
contour(av, bv, Zv, linewidth=1, cb=false) | |
scatter!([theta[i,1]],[theta[i,2]],ms=6,color="black",legend=false) | |
end | |
gif(anim, "./Desktop/anim_fps15.gif", fps = 15) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment