Last active
June 6, 2024 15:01
-
-
Save abikoushi/b3b19a530172a02e66b85cbc94ce3030 to your computer and use it in GitHub Desktop.
Sparse poisson regression (proto-type)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#### | |
#Negative sampling | |
#### | |
library(Matrix) | |
library(ggplot2) | |
##tau = prior param. | |
#grad | |
dlogll <- function(lambda,Y,X,W,tau){ | |
as.vector(t(X)%*%(lambda-Y)) + 0.5*tau*W | |
} | |
#hessian | |
d2logll <- function(lambda,X,W,tau){ | |
t(X)%*%sweep(X,1,lambda,"*") + diag(0.5*tau, ncol(X)) | |
} | |
#0-sampling | |
dlogll0 <- function(lambda,X,W,tau){ | |
as.vector(t(X)%*%(lambda)) + 0.5*tau*W | |
} | |
poisreg0 <- function(Y,X,tau,iter,lr=1){ | |
N <- length(Y) | |
D <- ncol(X) | |
W <- numeric(D) | |
ll <- numeric(iter) | |
#pb <- txtProgressBar(min = 1, max = iter, style = 3) | |
for(i in 1:iter){ | |
lambda <- as.vector(exp(X%*%W)) | |
ll[i] <- sum(dpois(Y,lambda,log = TRUE)) | |
g <- dlogll(lambda,Y,X,W,tau) | |
H <- d2logll(lambda,X,W,tau) | |
B <- solve(H, g) | |
W <- W - lr*B | |
#setTxtProgressBar(pb, i) | |
} | |
return(list(W=W,ll=ll,H=H)) | |
} | |
poisreg_sp <- function(Y,X,m,tau,iter,lr=1){ | |
N <- length(Y) | |
D <- ncol(X) | |
W <- numeric(D) | |
ll <- numeric(iter) | |
#pb <- txtProgressBar(min = 1, max = iter, style = 3) | |
for(i in 1:iter){ | |
lambda <- as.vector(exp(X%*%W)) | |
ll[i] <- sum(dpois(Y,lambda,log = TRUE)) | |
g <- dlogll(lambda,Y,X,W,tau) | |
H <- d2logll(lambda,X,W,tau) | |
## | |
X1 <- t(rmultinom(m,1,prob = rep(1/20,20))) | |
X2 <- t(rmultinom(m,1,prob = rep(1/20,20))) | |
Xs <- cbind(1,X1[,-1],X2[,-1]) | |
lam0 <- as.vector(exp(Xs%*%W)) | |
ll[i] <- -sum(lam0) | |
g <- g + dlogll0(lam0,Xs,W,tau) | |
H <- H + d2logll(lam0,Xs,W,tau) | |
### | |
B <- solve(H, g) | |
W <- W - lr*B | |
#setTxtProgressBar(pb, i) | |
} | |
return(list(W=W,ll=ll,H=H)) | |
} | |
df0 <- expand.grid(a = factor(1:20), b = factor(1:20)) | |
X <- model.matrix(~a+b, data=df0) | |
B <- rnorm(ncol(X)) | |
Y <- rpois(nrow(X),exp(X%*%B)) | |
df1 <- df0 | |
df1$Y <- Y | |
df1 <- df1[df1$Y>0,] | |
X1 <- sparse.model.matrix(~a+b, data=df1) | |
m <- nrow(df0) - nrow(df1) | |
system.time( | |
out <- poisreg0(Y,X,tau = 0.1,iter = 50,lr=0.5) | |
) | |
system.time( | |
out_sp <- poisreg_sp(Y,X,m,tau=0.1,iter = 50,lr=0.5) | |
) | |
plot(out$ll,type = "l",col="darkorange") | |
plot(out_sp$ll,type = "l",col="royalblue") | |
df <- data.frame(true=B,est1=out$W,est2=out_sp$W) | |
ggplot(df,aes(x=true))+ | |
geom_linerange(aes(ymin=est1,ymax=est2),alpha=0.7)+ | |
geom_point(aes(y=est1),alpha=0.7, colour="darkorange")+ | |
geom_point(aes(y=est2),alpha=0.7, colour="royalblue")+ | |
geom_abline(intercept=0,slope=1,linetype=2)+ | |
theme_bw()+labs(y="estimates") | |
sqrt(mean((B-out$W)^2)) | |
sqrt(mean((B-out_sp$W)^2)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment