Created
December 13, 2022 10:37
-
-
Save abikoushi/e7418b1327acfeeec5db875e77b2b499 to your computer and use it in GitHub Desktop.
R implementation of Polson 2013 "Bayesian inference for logistic models using Polya-Gamma latent variables"
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(BayesLogit) | |
library(ggplot2) | |
#y: response variable | |
#n: binomial size parameter | |
#X: explanatory design matrix | |
#lambda: prior parameter | |
gibbs_logistic <- function(y,n,X,lambda,iter){ | |
N <- length(y) | |
d <- ncol(X) | |
B <- diag(lambda, d) | |
beta_tilde <- matrix(0, iter, d) | |
beta_tilde[1,] <- rnorm(d) | |
kappa <- (y-0.5*n) | |
for(i in 2:iter){ | |
eta <- X%*%beta_tilde[i-1,] | |
Omega <- diag(rpg(N, n, eta)) | |
Vinv <- (t(X)%*%Omega%*%X + B) | |
U <- chol(Vinv) | |
A <- forwardsolve(t(U), t(X)%*%(kappa)) | |
m <- backsolve(U, A) #equivalent to #m <- solve(Vinv%*%(t(X)%*%(y-0.5*n))) | |
beta_tilde[i,] = m + backsolve(U, rnorm(d)) #multiply to inverse of U | |
} | |
return(beta_tilde) | |
} | |
set.seed(123) | |
beta <- c(1,1) | |
X <- matrix(runif(2*100),100,2) | |
y <- rbinom(100,10,plogis(X%*%beta)) | |
beta_sample <- gibbs_logistic(y,10,X,1,2000) | |
dfs <- expand.grid(row=1:2,iter=1:2000) | |
dfs$value <- as.vector(beta_sample) | |
ggplot(dfs, aes(x=iter, y=value))+ | |
geom_line(colour="grey")+ | |
facet_grid(row~., scales = "free", labeller = label_both)+ | |
theme_classic(14)+ | |
theme(strip.text.y = element_text(angle = 0), | |
axis.text = element_text(colour = "black")) | |
lp <- function(beta){ | |
sum(dbinom(y,10,plogis(X%*%beta), log = TRUE))+sum(dnorm(beta,log=TRUE)) | |
} | |
df <- expand.grid(b1=seq(0.4,1.5,by=0.02),b2=seq(0.4,1.6,by=0.02)) | |
lp_v <- apply(df, 1, function(b){lp(c(b[1],b[2]))}) | |
burnin <- 1:500 | |
dfs <- data.frame(beta_sample[-burnin,]) | |
colnames(dfs) <- c("b1","b2") | |
ggplot(dfs, aes(x=b1, y=b2))+ | |
geom_point(alpha=0.2)+ | |
geom_contour(data = df, aes(z=exp(lp_v), colour=after_stat(level)))+ | |
scale_color_viridis_c()+ | |
theme_classic(16) | |
#ggsave("post.png") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment