Created
November 30, 2016 09:53
-
-
Save ackdav/30ba675a9407a79ae618be61a7b94397 to your computer and use it in GitHub Desktop.
Source Code to "Sentdex Deep Learning with Neural Networks and Tensorflow" part 4
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
from tensorflow.examples.tutorials.mnist import input_data | |
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) | |
n_nodes_hl1 = 500 | |
n_nodes_hl2 = 500 | |
n_nodes_hl3 = 500 | |
n_classes = 10 | |
batch_size = 100 | |
x = tf.placeholder('float',[None,784]) | |
y = tf.placeholder('float') | |
def neural_net_model(data): | |
hidden_1_layer = {'weights':tf.Variable(tf.random_normal([784,n_nodes_hl1])),'biases':tf.Variable(tf.random_normal([n_nodes_hl1]))} | |
hidden_2_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl1,n_nodes_hl2])), | |
'biases':tf.Variable(tf.random_normal([n_nodes_hl2]))} | |
hidden_3_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl2,n_nodes_hl3])), | |
'biases':tf.Variable(tf.random_normal([n_nodes_hl3]))} | |
output_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl3,n_classes])), | |
'biases':tf.Variable(tf.random_normal([n_classes]))} | |
l1 = tf.add(tf.matmul(data, hidden_1_layer['weights']),hidden_1_layer['biases']) | |
l1 = tf.nn.relu(l1) | |
l2 = tf.add(tf.matmul(l1, hidden_2_layer['weights']),hidden_2_layer['biases']) | |
l2 = tf.nn.relu(l2) | |
l3 = tf.add(tf.matmul(l2, hidden_3_layer['weights']),hidden_3_layer['biases']) | |
l3 = tf.nn.relu(l3) | |
output = tf.matmul(l3, output_layer['weights']) + output_layer['biases'] | |
return output | |
def train_neural_network(x): | |
prediction = neural_net_model(x) | |
cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(prediction,y)) | |
optimizer = tf.train.AdamOptimizer().minimize(cost) | |
hm_epochs = 10 | |
with tf.Session() as sess: | |
sess.run(tf.initialize_all_variables()) | |
for epoch in range(hm_epochs): | |
epoch_loss = 0 | |
for _ in range(int(mnist.train.num_examples/batch_size)): | |
epoch_x,epoch_y = mnist.train.next_batch(batch_size) | |
_,epoch_c = sess.run([optimizer, cost], feed_dict = {x: epoch_x, y: epoch_y}) | |
epoch_loss += epoch_c | |
print('Epoch', epoch, 'completed out of ', hm_epochs, 'loss: ', epoch_loss) | |
correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y,1)) | |
accuracy = tf.reduce_mean(tf.cast(correct, 'float')) | |
print('Accuracy:', accuracy.eval({x:mnist.test.images, y: mnist.test.labels})) | |
train_neural_network(x) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
softmax_cross_entropy_with_logits( _sentinel=None, labels=None, logits=None, dim=-1, name=None )
Try passing the labels and logits parameters
cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels = y, logits = prediction))