Created
August 19, 2015 18:31
-
-
Save aclements/45e464e104a347992573 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
package main | |
import ( | |
"math/rand" | |
"runtime" | |
"sync/atomic" | |
"time" | |
) | |
const ( | |
numGs = 10 | |
numNodes = 100000 / numGs | |
baseInsertRate = 50 | |
valueSize = 256 | |
) | |
// 10, 100000 / numGs, 50, 256 is good. | |
var insertRate int64 = baseInsertRate | |
func main() { | |
done := make(chan int) | |
for i := 0; i < numGs; i++ { | |
go worker(done) | |
} | |
<-time.After(10 * time.Second) | |
atomic.StoreInt64(&insertRate, 0) | |
for i := 0; i < numGs; i++ { | |
<-done | |
} | |
runtime.GC() | |
atomic.StoreInt64(&insertRate, baseInsertRate) | |
for i := 0; i < numGs; i++ { | |
go worker(done) | |
} | |
<-time.After(10 * time.Second) | |
atomic.StoreInt64(&insertRate, 0) | |
for i := 0; i < numGs; i++ { | |
<-done | |
} | |
} | |
func worker(done chan<- int) { | |
// Create a local splay tree. | |
tree := &Tree{nil} | |
for i := 0; i < numNodes; i++ { | |
k := Key(rand.Float64()) | |
tree.Insert(k, newVal()) | |
} | |
for atomic.LoadInt64(&insertRate) != 0 { | |
if int64(rand.Intn(100)) <= insertRate { | |
// Perform insertion | |
doInsert(tree) | |
} else { | |
// Perform lookup | |
doLookup(tree) | |
} | |
} | |
done <- 1 | |
} | |
func newVal() interface{} { | |
return new([valueSize]*byte) | |
} | |
func doInsert(tree *Tree) { | |
for { | |
k := Key(rand.Float64()) | |
if _, ok := tree.Find(k); !ok { | |
tree.Insert(k, newVal()) | |
if gk, _, ok := tree.FindGreatestLessThan(k); ok { | |
tree.Remove(gk) | |
} else { | |
tree.Remove(k) | |
} | |
break | |
} | |
} | |
} | |
func doLookup(tree *Tree) { | |
k := Key(rand.Float64()) | |
tree.FindGreatestLessThan(k) | |
} | |
// Derived from splay.js in the Octane benchmark suite: | |
// https://code.google.com/p/octane-benchmark/source/browse/trunk/splay.js | |
// | |
// Copyright 2009 the V8 project authors. All rights reserved. | |
// Redistribution and use in source and binary forms, with or without | |
// modification, are permitted provided that the following conditions are | |
// met: | |
// | |
// * Redistributions of source code must retain the above copyright | |
// notice, this list of conditions and the following disclaimer. | |
// * Redistributions in binary form must reproduce the above | |
// copyright notice, this list of conditions and the following | |
// disclaimer in the documentation and/or other materials provided | |
// with the distribution. | |
// * Neither the name of Google Inc. nor the names of its | |
// contributors may be used to endorse or promote products derived | |
// from this software without specific prior written permission. | |
// | |
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
type Key float64 | |
type Val interface{} | |
// A splay tree is a self-balancing binary search tree with the | |
// additional property that recently accessed elements are quick to | |
// access again. It performs basic operations such as insertion, | |
// look-up and removal in O(log(n)) amortized time. | |
type Tree struct { | |
root *node | |
} | |
type node struct { | |
k Key | |
v Val | |
left, right *node | |
} | |
var k0 Key | |
var v0 Val | |
// IsEmpty returns whether the tree is empty. | |
func (tree *Tree) IsEmpty() bool { | |
return tree.root == nil | |
} | |
// Insert inserts a node into the tree with the specified key and | |
// value if the tree does not already contain a node with the | |
// specified key. If the value is inserted, it becomes the root of the | |
// tree. | |
func (tree *Tree) Insert(k Key, v Val) { | |
if tree.IsEmpty() { | |
tree.root = &node{k: k, v: v} | |
return | |
} | |
// Splay on the key to move the last node on the search path | |
// for the key to the root of the tree. | |
tree.splay(k) | |
if tree.root.k == k { | |
return | |
} | |
node := &node{k: k, v: v} | |
if k > tree.root.k { | |
node.left = tree.root | |
node.right = tree.root.right | |
tree.root.right = nil | |
} else { | |
node.right = tree.root | |
node.left = tree.root.left | |
tree.root.left = nil | |
} | |
tree.root = node | |
} | |
// Remove removes a node with the specified key from the tree. If the | |
// tree contains a node with this key, Remove returns the node's value | |
// and true. If the key is not found, Remove returns the zero value | |
// and false. | |
func (tree *Tree) Remove(k Key) (Val, bool) { | |
if tree.IsEmpty() { | |
return v0, false | |
} | |
tree.splay(k) | |
if tree.root.k != k { | |
return v0, false | |
} | |
removed := tree.root | |
if tree.root.left == nil { | |
tree.root = tree.root.right | |
} else { | |
right := tree.root.right | |
tree.root = tree.root.left | |
// Splay to make sure that the new root has an empty | |
// right child. | |
tree.splay(k) | |
// Insert the original right child as the right child | |
// of the new root. | |
tree.root.right = right | |
} | |
return removed.v, true | |
} | |
// Find returns the value of the node having the specified key or the | |
// zero value and false if the tree doesn't contain a node with the | |
// specified key. | |
func (tree *Tree) Find(k Key) (Val, bool) { | |
if tree.IsEmpty() { | |
return v0, false | |
} | |
tree.splay(k) | |
if tree.root.k == k { | |
return tree.root.v, true | |
} | |
return v0, false | |
} | |
// findMax returns the node with the largest key in the subtree rooted | |
// at n. | |
func (n *node) findMax() *node { | |
if n == nil { | |
return nil | |
} | |
for n.right != nil { | |
n = n.right | |
} | |
return n | |
} | |
// FindGreatestLessThan returns the key/value pair having the maximum | |
// key value that is less than k. If no such pair exists, | |
// FindGreatestLessThan returns the zero key, zero value, and false. | |
func (tree *Tree) FindGreatestLessThan(k Key) (Key, Val, bool) { | |
if tree.IsEmpty() { | |
return k0, v0, false | |
} | |
// Splay on the key to move the node with the given key or the | |
// last node on the search path to the top of the tree. | |
tree.splay(k) | |
// Now the result is either the root node or the greatest node | |
// in the left subtree. | |
if tree.root.k < k { | |
return tree.root.k, tree.root.v, true | |
} else if tree.root.left != nil { | |
max := tree.root.left.findMax() | |
return max.k, max.v, true | |
} else { | |
return k0, v0, false | |
} | |
} | |
// KeysToSlice returns a slice of all the keys of tree's nodes. | |
func (tree *Tree) KeysToSlice() []Key { | |
out := make([]Key, 0) | |
var rec func(n *node) | |
rec = func(n *node) { | |
if n != nil { | |
rec(n.left) | |
out = append(out, n.k) | |
rec(n.right) | |
} | |
} | |
rec(tree.root) | |
return out | |
} | |
// splay moves the node with the given key to the top of the tree. If | |
// no node has the given key, the last node on the search path is | |
// moved to the top of the tree. This is the simplified top-down | |
// splaying algorithm from: "Self-adjusting Binary Search Trees" by | |
// Sleator and Tarjan. | |
func (tree *Tree) splay(k Key) { | |
// Create a dummy node. The use of the dummy node is a bit | |
// counter-intuitive: The right child of the dummy node will | |
// hold the L tree of the algorithm. The left child of the | |
// dummy node will hold the R tree of the algorithm. Using a | |
// dummy node, left and right will always be nodes and we | |
// avoid special cases. | |
dummy := new(node) | |
left := dummy | |
right := dummy | |
cur := tree.root | |
for { | |
if k < cur.k { | |
if cur.left == nil { | |
break | |
} | |
if k < cur.left.k { | |
// Rotate right | |
tmp := cur.left | |
cur.left = tmp.right | |
tmp.right = cur | |
cur = tmp | |
if cur.left == nil { | |
break | |
} | |
} | |
// Link right | |
right.left = cur | |
right = cur | |
cur = cur.left | |
} else if k > cur.k { | |
if cur.right == nil { | |
break | |
} | |
if k > cur.right.k { | |
// Rotate left | |
tmp := cur.right | |
cur.right = tmp.left | |
tmp.left = cur | |
cur = tmp | |
if cur.right == nil { | |
break | |
} | |
} | |
// Left left | |
left.right = cur | |
left = cur | |
cur = cur.right | |
} else { | |
break | |
} | |
} | |
// Assemble | |
left.right = cur.left | |
right.left = cur.right | |
cur.left = dummy.right | |
cur.right = dummy.left | |
tree.root = cur | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment