Created
September 26, 2015 22:27
-
-
Save aconz2/1bfded4e444b2b6adbfe to your computer and use it in GitHub Desktop.
visualize the perceptron weight vector changing over training examples
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
from matplotlib import pyplot as plt | |
import numpy as np | |
from mpl_toolkits.mplot3d import Axes3D | |
normed = lambda v: v / np.linalg.norm(v) | |
# orthogonal vector in 2 space | |
orthogonal = lambda v: np.cross(v, [0, 0, 1])[:2] | |
pltvec = lambda v, **kwargs: plt.plot([0, v[0]], [0, v[1]], **kwargs) | |
classify = lambda D, weight: (np.dot(D, weight) > 0) * 2 - 1 | |
score = lambda D, weight, y: np.count_nonzero(classify(D, weight) == y) | |
N = 200 | |
# generate N random x,y points in [-1, 1] x [-1, 1] | |
D = np.random.ranf(size=(N, 2)) * 2 - 1 | |
Dx, Dy = D.T | |
# generate random weight | |
weight = normed(np.random.ranf(size=2)) | |
boundary = orthogonal(weight) | |
noise = .1 | |
toflip = np.random.ranf(N) < noise | |
y = classify(D, weight) | |
y[toflip] = -1 * y[toflip] | |
Dplus, Dminus = D[y == 1], D[y == -1] | |
def train(D, Y, iters=3): | |
nsamples, nfeatures = D.shape | |
weight = np.zeros(nfeatures) | |
trace = [weight] | |
for i in range(iters): | |
D_perm = D[np.random.shuffle(np.arange(nsamples))][0] | |
for x, y in zip(D_perm, Y): | |
activation = y * np.dot(x, weight) | |
if activation <= 0: | |
weight += y * x | |
trace.append(np.copy(weight)) | |
return np.array(trace) | |
trace = train(D, y) | |
trace_norm = trace / np.linalg.norm(trace, axis=1).max() | |
fig = plt.figure() | |
ax = fig.add_subplot(111, projection='3d') | |
plt.xlim(-1, 1) | |
plt.ylim(-1, 1) | |
for i, (x, y) in enumerate(trace_norm): | |
ax.plot3D([0, x], [0, y], i, color='b', alpha=0.5) | |
### | |
plt.figure() | |
plt.plot(Dplus[:, 0], Dplus[:, 1], 'b.') | |
plt.plot(Dminus[:, 0], Dminus[:, 1], 'r.') | |
pltvec(weight, color='g', label='weight') | |
pltvec(boundary, color='k', label='boundary') | |
pltvec(-boundary, color='k') | |
#for w in trace: | |
# pltvec(w) | |
plt.legend() | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment