Created
January 3, 2017 03:34
-
-
Save actsasflinn/8a0515cacebbb73a1d3744a77252f9d9 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(xgboost) | |
library(Matrix) | |
setwd("~/Projects/xgboost_test") | |
train_file = "train_data" | |
if (!file.exists(train_file)) { | |
download.file("https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data", train_file) | |
} | |
test_file = "test_data" | |
if (!file.exists(test_file)) { | |
download.file("https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test", test_file) | |
} | |
headers = c("age", "workclass", "fnlwgt", "education", "education_num", | |
"marital_status", "occupation", "relationship", "race", "gender", | |
"capital_gain", "capital_loss", "hours_per_week", "native_country", | |
"income_bracket") | |
income.train = read.csv(train_file, header = F, col.names = headers, strip.white=T) | |
income.train$income_bracket <- ifelse(income.train$income_bracket=="<=50K",0,1) | |
income.train$fnlwgt <- NULL | |
income.train$age <- NULL | |
income.train$capital_gain <- NULL | |
income.train$capital_loss <- NULL | |
income.train$hours_per_week <- NULL | |
income.train$race <- NULL | |
income.train$native_country <- NULL | |
income.train$education_num <- NULL | |
train_spmx = sparse.model.matrix(income_bracket~.-1, data = income.train) | |
bst <- xgboost(data = train_spmx, label = income.train$income_bracket, max_depth = 9, | |
eta = 1, nthread = 2, nrounds = 100, objective = "binary:logistic") | |
income.test = read.csv(test_file, header = F, col.names = headers, strip.white=T, skip=1) | |
income.test$income_bracket <- ifelse(income.test$income_bracket=="<=50K.",0,1) | |
income.test$fnlwgt <- NULL | |
income.test$age <- NULL | |
income.test$capital_gain <- NULL | |
income.test$capital_loss <- NULL | |
income.test$hours_per_week <- NULL | |
income.test$race <- NULL | |
income.test$native_country <- NULL | |
income.test$education_num <- NULL | |
test_spmx = sparse.model.matrix(income_bracket~.-1, data = income.test) | |
income.test$predict <- ifelse(predict(bst, test_spmx)>0.5,1,0) | |
income.test$match <- income.test$predict==income.test$income_bracket | |
cat('error of preds=', mean(income.test$match),'\n') | |
importance <- xgb.importance(feature_names = colnames(train_spmx), model = bst) | |
print(xgb.plot.importance(importance_matrix = importance)) | |
xgb.save(bst, 'xgboost1.save') | |
xgb.dump(bst, 'xgboost1.dump', with_states = TRUE) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment