Last active
January 2, 2024 12:26
-
-
Save adamkucharski/5ac9d02485706398e9ba80c28cbe1ca2 to your computer and use it in GitHub Desktop.
Illustrative plots for PCR positivity
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# - - - - - - - - - - - - - - - - - - - - - - - | |
# Code by Adam Kucharski to accompany post 'Counting current COVID infections' (2nd Jan 2024) | |
# Post is available at: https://kucharski.substack.com | |
# Code in this file is shared under an MIT license (https://opensource.org/license/mit/) | |
# - - - - - - - - - - - - - - - - - - - - - - - | |
# Load libraries | |
library(dplyr) | |
library(readr) | |
# Import PCR positivity estimates from Hellewell et al (BMC Med, 2021) | |
pcr_curve <- read_csv("https://raw.githubusercontent.com/cmmid/pcr-profile/main/PCR_curve_summary.csv") | |
# Convert median PCR curves to daily probabilities | |
pcr_curve <- pcr_curve |> mutate(p_neg = 1-median) | |
# Calculate the daily median value, averaging across each day to get a discretised distribution | |
daily_data <- pcr_curve |> | |
mutate(day = round(days_since_infection)) |> | |
group_by(day) |> | |
summarise(daily_median = mean(median)) # Or use sum(median) if appropriate | |
# Function to extract daily value | |
p_by_day <- function(x){daily_data[match(x,daily_data$day),]$daily_median} | |
# Plot PCR positivity over time | |
max_days <- 30 # Time period to plot | |
par(mfrow=c(1,1),mgp=c(2.5,0.7,0),mar = c(3.5,3.5,1,1)) | |
plot(0:max_days,p_by_day(0:max_days),type="l",xlab="days after infection",ylab="probability will test positive by PCR", | |
xaxs="i",yaxs="i",bty="l",lwd=2,col="dark orange",ylim=c(0,0.8)) | |
points(0:max_days,p_by_day(0:max_days),col="dark orange",pch=19) | |
dev.copy(png,paste0("delay.png"),units="cm",width=15,height=10,res=150) | |
dev.off() | |
# Plot normalised curves, i.e. P(infected on a given day | positive) | |
par(mfrow=c(1,1),mgp=c(2.5,0.7,0),mar = c(3.5,3.5,1,1)) | |
plot(0:max_days,p_by_day(0:max_days)/sum(p_by_day(0:max_days)),type="l",xlab="days since infection",ylab="probability", | |
xaxs="i",yaxs="i",bty="l",lwd=2,col="dark orange",ylim=c(0,0.12)) | |
points(0:max_days,p_by_day(0:max_days)/sum(p_by_day(0:max_days)),col="dark orange",pch=19) | |
graphics::arrows(x0=25,y0=0.085,x1=25,y1=0.01,length=0.1,lwd=2) | |
graphics::text(x=25,y=0.09,labels="less likely",adj=0.5) | |
graphics::arrows(x0=0.5,y0=0.105,x1=0.5,y1=0.01,length=0.1,lwd=2) | |
graphics::text(x=1,y=0.11,labels="less likely",adj=0.2) | |
graphics::arrows(x0=8,y0=0.105,x1=6,y1=0.09,length=0.1,lwd=2) | |
graphics::text(x=8,y=0.11,labels="more likely",adj=0) | |
dev.copy(png,paste0("delay_norm.png"),units="cm",width=15,height=10,res=150) | |
dev.off() | |
# Infection timing given exponential growth ------------------------------------------------------ | |
# Define time period and growth | |
xx_days <- 0:max_days | |
daily_growth <- 0.06 | |
yy <- 100*exp(xx_days*daily_growth) | |
# Plot growth in new infections over time | |
par(mfrow=c(1,1),mgp=c(2.5,0.7,0),mar = c(3.5,3.5,1,1)) | |
plot(xx_days,yy,type="l",xlab="days",ylab="new infections (scaled)", | |
xaxs="i",yaxs="i",bty="l",lwd=2,col="dark orange",ylim=c(100,610)) | |
points(xx_days,yy,col="dark orange",pch=19) | |
dev.copy(png,paste0("infections.png"),units="cm",width=15,height=10,res=150) | |
dev.off() | |
# Plot P(infection time | infected) in growing epidemic | |
par(mfrow=c(1,1),mgp=c(2.5,0.7,0),mar = c(3.5,3.5,1,1)) | |
plot(xx_days,rev(yy)/sum(yy),type="l",xlab="days since infection",ylab="probability", | |
xaxs="i",yaxs="i",bty="l",lwd=2,col="dark orange",ylim=c(0,0.1)) | |
points(xx_days,rev(yy)/sum(yy),col="dark orange",pch=19) | |
dev.copy(png,paste0("infections_time.png"),units="cm",width=15,height=10,res=150) | |
dev.off() | |
# Adjust P(infection time | positive) for epidemic dynamics | |
adjust_yy <- (p_by_day(0:max_days)/sum(p_by_day(0:max_days)))*rev(yy)/sum(yy) | |
# Plot P(infection time | positive) in growing and flat epidemic | |
par(mfrow=c(1,1),mgp=c(2.5,0.7,0),mar = c(3.5,3.5,1,1)) | |
plot(xx_days,adjust_yy/sum(adjust_yy),type="l",xlab="days since infection",ylab="probability", | |
xaxs="i",yaxs="i",bty="l",lwd=2,col="dark orange",ylim=c(0,0.14)) | |
lines(0:max_days,p_by_day(0:max_days)/sum(p_by_day(0:max_days)),lwd=2,col="dark orange",lty=2) | |
points(xx_days,adjust_yy/sum(adjust_yy),col="dark orange",pch=19) | |
graphics::arrows(x0=8,y0=0.125,x1=6,y1=0.11,length=0.1,lwd=2) | |
graphics::text(x=7,y=0.13,labels="during growing epidemic",adj=0) | |
dev.copy(png,paste0("PCR_delay_adjusted.png"),units="cm",width=15,height=12,res=150) | |
dev.off() | |
# New daily infections vs PCR positivity ------------------------------------------------------ | |
# Simulate 3 scenarios | |
xx_days <- 0:max_days | |
yy <- 0.16*exp(xx_days*0.06) | |
yy2 <- 1.67*exp(-xx_days*0.0527) | |
yy3 <- 0.43*sin(40*pi*xx_days/365)+0.45 | |
# Plot new infections over time | |
par(mfrow=c(1,1),mgp=c(2.5,0.7,0),mar = c(3.5,3.5,1,1)) | |
plot(xx_days,yy,type="l",xlab="days",ylab="new infections (% population)", | |
xaxs="i",yaxs="i",bty="l",lwd=2,col="dark orange",ylim=c(0,2.5),xlim=c(0,30.5)) | |
points(xx_days,yy,col="dark orange",pch=19) | |
lines(xx_days,yy2,col="dark blue") | |
points(xx_days,yy2,col="dark blue",pch=19) | |
lines(xx_days,yy3,col="dark green") | |
points(xx_days,yy3,col="dark green",pch=19) | |
# Calculate % PCR positive on day = max_days | |
print(sum(rev(yy)*p_by_day(0:max_days))) | |
print(sum(rev(yy2)*p_by_day(0:max_days))) | |
print(sum(rev(yy3)*p_by_day(0:max_days))) | |
dev.copy(png,paste0("infections_to_prevalence.png"),units="cm",width=15,height=10,res=150) | |
dev.off() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment