Created
January 5, 2023 13:01
-
-
Save adamkucharski/b6a26f2bdbc09123694e0cd2c2ea2aaf to your computer and use it in GitHub Desktop.
Final size attack rate simulation from contact data
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | |
# Illustrative code to general finalsize model outputs from contact matrix | |
# Adapted from: https://epiverse-trace.github.io/finalsize/articles/finalsize.html | |
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | |
library(devtools) | |
install.packages("finalsize") | |
library(finalsize) | |
library(rio) | |
library(tidyverse) | |
remotes::install_cran("socialmixr"); library(socialmixr) | |
age_labels <- seq(0,80,10) | |
# Load UK social mixing data ---------------------------------------------- | |
contact_data <- contact_matrix( | |
polymod, | |
countries = "United Kingdom", | |
age.limits = age_labels, # Use age bands | |
symmetric = TRUE | |
) | |
# Define model parameters ------------------------------------------------- | |
demography_vector = contact_data$demography$population | |
contact_matrix = t(contact_data$matrix) | |
contact_matrix = contact_matrix / max(eigen(contact_matrix)$values) | |
names(demography_vector) = contact_data$demography$age.group | |
n_demo_grps = length(demography_vector) | |
contact_matrix = contact_matrix / demography_vector | |
# Define susceptibility based on proportion infected | |
susceptibility = matrix( | |
data = 1, # Susceptibility same across groups (i.e. new virus) | |
n_demo_grps | |
) | |
n_risk_grps = 1L | |
p_susceptibility = matrix(1, n_demo_grps, n_risk_grps) | |
# Run model | |
r0 = 2 | |
output_model <- finalsize::final_size( | |
r0 = r0, | |
contact_matrix = contact_matrix, | |
demography_vector = demography_vector, | |
susceptibility = susceptibility, | |
p_susceptibility = p_susceptibility, | |
solver = "iterative" | |
) | |
plot(tail(age_labels,-1),output_model$p_infected,col="blue",pch=19,lwd=2, | |
xlab="age", | |
ylab="proportion infected", | |
ylim=c(0,1)) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment