-
-
Save adamlauretig/d1e2b47fae9ceb1a6cca5bae90daa889 to your computer and use it in GitHub Desktop.
Classic instrumental variables regression model for Stan
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
data { | |
int N; | |
int PX; // dimension of exogenous covariates | |
int PN; // dimension of endogenous covariates | |
int PZ; // dimension of instruments | |
matrix[N, PX] X_exog; // exogenous covariates | |
matrix[N, PN] X_endog; // engogenous covariates | |
matrix[N, PZ] Z; // instruments | |
vector[N] Y_outcome; // outcome variable | |
int<lower=0,upper=1> run_estimation; // simulate (0) or estimate (1) | |
} | |
transformed data { | |
matrix[N, 1 + PN] Y; | |
Y[,1] = Y_outcome; | |
Y[,2:] = X_endog; | |
} | |
parameters { | |
vector[PX + PN] gamma1; | |
matrix[PX + PZ, PN] gamma2; | |
vector[PN + 1] alpha; | |
vector<lower = 0>[1 + PN] scale; | |
cholesky_factor_corr[1 + PN] L_Omega; | |
} | |
transformed parameters { | |
matrix[N, 1 + PN] mu; // the conditional means of the process | |
mu[:,1] = rep_vector(alpha[1], N) + append_col(X_endog,X_exog)*gamma1; | |
mu[:,2:] = rep_matrix(alpha[2:]', N) + append_col(X_exog, Z)*gamma2; | |
} | |
model { | |
// priors | |
to_vector(gamma1) ~ normal(0, 1); | |
to_vector(gamma2) ~ normal(0, 1); | |
to_vector(alpha) ~ normal(0, 1); | |
scale ~ cauchy(0, 2); | |
L_Omega ~ lkj_corr_cholesky(4); | |
// likelihood | |
if(run_estimation ==1){ | |
for(n in 1:N) { | |
Y[n] ~ multi_normal_cholesky(mu[n], diag_pre_multiply(scale, L_Omega)); | |
} | |
} | |
} | |
generated quantities { | |
matrix[N, 1 + PN] Y_simulated; | |
for(n in 1:N) { | |
Y_simulated[n, 1:(1+PN)] = multi_normal_cholesky_rng(mu[n]', diag_pre_multiply(scale, L_Omega))'; | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment