-
-
Save adammiller/826148 to your computer and use it in GitHub Desktop.
var simplifyPath = function( points, tolerance ) { | |
// helper classes | |
var Vector = function( x, y ) { | |
this.x = x; | |
this.y = y; | |
}; | |
var Line = function( p1, p2 ) { | |
this.p1 = p1; | |
this.p2 = p2; | |
this.distanceToPoint = function( point ) { | |
// slope | |
var m = ( this.p2.y - this.p1.y ) / ( this.p2.x - this.p1.x ), | |
// y offset | |
b = this.p1.y - ( m * this.p1.x ), | |
d = []; | |
// distance to the linear equation | |
d.push( Math.abs( point.y - ( m * point.x ) - b ) / Math.sqrt( Math.pow( m, 2 ) + 1 ) ); | |
// distance to p1 | |
d.push( Math.sqrt( Math.pow( ( point.x - this.p1.x ), 2 ) + Math.pow( ( point.y - this.p1.y ), 2 ) ) ); | |
// distance to p2 | |
d.push( Math.sqrt( Math.pow( ( point.x - this.p2.x ), 2 ) + Math.pow( ( point.y - this.p2.y ), 2 ) ) ); | |
// return the smallest distance | |
return d.sort( function( a, b ) { | |
return ( a - b ); //causes an array to be sorted numerically and ascending | |
} )[0]; | |
}; | |
}; | |
var douglasPeucker = function( points, tolerance ) { | |
if ( points.length <= 2 ) { | |
return [points[0]]; | |
} | |
var returnPoints = [], | |
// make line from start to end | |
line = new Line( points[0], points[points.length - 1] ), | |
// find the largest distance from intermediate poitns to this line | |
maxDistance = 0, | |
maxDistanceIndex = 0, | |
p; | |
for( var i = 1; i <= points.length - 2; i++ ) { | |
var distance = line.distanceToPoint( points[ i ] ); | |
if( distance > maxDistance ) { | |
maxDistance = distance; | |
maxDistanceIndex = i; | |
} | |
} | |
// check if the max distance is greater than our tollerance allows | |
if ( maxDistance >= tolerance ) { | |
p = points[maxDistanceIndex]; | |
line.distanceToPoint( p, true ); | |
// include this point in the output | |
returnPoints = returnPoints.concat( douglasPeucker( points.slice( 0, maxDistanceIndex + 1 ), tolerance ) ); | |
// returnPoints.push( points[maxDistanceIndex] ); | |
returnPoints = returnPoints.concat( douglasPeucker( points.slice( maxDistanceIndex, points.length ), tolerance ) ); | |
} else { | |
// ditching this point | |
p = points[maxDistanceIndex]; | |
line.distanceToPoint( p, true ); | |
returnPoints = [points[0]]; | |
} | |
return returnPoints; | |
}; | |
var arr = douglasPeucker( points, tolerance ); | |
// always have to push the very last point on so it doesn't get left off | |
arr.push( points[points.length - 1 ] ); | |
return arr; | |
}; |
Hi, I do not understand the functionality in the below Code snippets, can you explain it? thanks a lot.
line.distanceToPoint( p, true ); // line no 53
line.distanceToPoint( p, true ); // line no 61
Using it to reduce path complexity after i created gestures with https://github.com/uwdata/gestrec
I hope it works, i m such in a hurry.. Thanks for sharing anyway !
The algorithm of Douglas Peucker must be analyzed / improved in Language R, Here I detail the tools that I use. I am using the following tools:
QGIS: Here I have uploaded an OSM map of California. And get the semantic information.
PostgreSQL: Here the stored paths (Latitude and Longitude)
Language R: Here we must do the manipulation of the RDP algorithm
Has anyone done any similar project?
same question as zhengyifan
it seems these lines do nothing?
line.distanceToPoint( p, true ); // line no 53
line.distanceToPoint( p, true ); // line no 61
I believe the distanceToPoint() function is flawed, which may be a source of problems. If you are testing a point that's near the supporting line, but far away from the segment, you'll return an incorrectly small distance. This may cause points to be omitted that shouldn't be.
See: http://stackoverflow.com/questions/849211/shortest-distance-between-a-point-and-a-line-segment