Last active
August 23, 2016 11:33
-
-
Save adbuerger/bf41345b6252ac7ec8cea0dc25ad1c27 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import casadi as ca | |
import pylab as pl | |
from time import time | |
# Run with CasADi 2.4.3 | |
OPTNUMDIR = True | |
if OPTNUMDIR: | |
ca.CasadiOptions.setOptimizedNumDir(1) | |
# Problem setup | |
# Aim: add up two dense inverted matrices, then invert the sum, | |
# and afterwards compute the trace | |
N = 200 | |
x = ca.MX.sym("x", N) | |
a = pl.random(N) | |
C = ca.mul([a, x.T]) | |
b = pl.random(N) | |
D = ca.mul([b, x.T]) | |
x_init = pl.random(N) | |
f_p1 = ca.solve(C, ca.MX.eye(N), "csparse") | |
f_p2 = ca.solve(D, ca.MX.eye(N), "csparse") | |
fcn_p1 = ca.MXFunction("fcn_p1", [x], [f_p1]) | |
fcn_p2 = ca.MXFunction("fcn_p2", [x], [f_p2]) | |
# Parallel evaluation | |
f_switch = ca.Switch("f_switch", [fcn_p1, fcn_p2], fcn_p1) | |
[f_switch_mapped] = f_switch.map( \ | |
[ca.DMatrix(range(2)).T, ca.repmat(x,1,2)],"openmp") | |
f_mapped_eval = ca.MXFunction("f_mapped_eval", \ | |
[x], [f_switch_mapped[:,:N] + f_switch_mapped[:,N:]]) | |
f_parallel = ca.trace(ca.solve(f_mapped_eval([x])[0], ca.MX.eye(N), "csparse")) | |
fcn_parallel = ca.MXFunction("fcn_parallel", [x], [f_parallel]) | |
# Serial evaluation | |
f_serial = ca.trace(ca.solve(f_p1 + f_p2, ca.MX.eye(N), "csparse")) | |
fcn_serial = ca.MXFunction("fcn_serial", [x], [f_serial]) | |
# Problem initialization | |
t_start = time() | |
nlp_parallel = ca.MXFunction("nlp_parallel", \ | |
ca.nlpIn(x = x), ca.nlpOut(f = f_parallel)) | |
nlpsol_parallel = ca.NlpSolver("nlpsol_parallel", \ | |
"ipopt", nlp_parallel) | |
t_stop = time() | |
print "Duration init parallel: " + str(t_stop - t_start) + " s" | |
t_start = time() | |
nlp_serial = ca.MXFunction("nlp_serial", \ | |
ca.nlpIn(x = x), ca.nlpOut(f = f_serial)) | |
nlpsol_serial = ca.NlpSolver("nlpsol_serial", \ | |
"ipopt", nlp_serial) | |
t_stop = time() | |
print "Duration init serial: " + str(t_stop - t_start) + " s" | |
# Problem evaluation | |
print "nlp_parallel(x_init) = " + str(nlp_parallel(x = x_init)["f"]) | |
print "nlp_serial(x_init) = " + str(nlp_serial(x = x_init)["f"]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment