Skip to content

Instantly share code, notes, and snippets.

@adhithyan15
Last active August 29, 2015 14:10
Show Gist options
  • Save adhithyan15/db32bef4bec1eae2e77a to your computer and use it in GitHub Desktop.
Save adhithyan15/db32bef4bec1eae2e77a to your computer and use it in GitHub Desktop.
# usage: `python ~/Desktop/contours.py 1994-654-12_v02.tif`
# output is to a squareless.txt file and the directory "out"
# Working well with thumbnails with 400px as their longest side - untested with other dimensions
# for i in $(ls -1 | grep tif); do python /Users/artsyinc/Documents/resistance/experiments/artwork_image_cropping/contours.py $i; done
import cv2
import numpy as np
from matplotlib import pyplot as plt
import sys
import math
import pdb
import random as ra
import json
import csv
### convenience plotting functions
def ss(thing):
cv2.imwrite("about/%s.tif" % (ra.random()), thing)
plt.subplot(121),plt.imshow(thing,cmap = 'gray')
plt.show()
def dd(thing, square):
extra = thing.copy()
cv2.drawContours(extra, [square], -1, (0,255,60), 3)
ss(extra)
###
# Loading image
if len(sys.argv) == 2:
filename = sys.argv[1] # for drawing purposes
else:
print "No input image given! \n"
img = cv2.imread(filename,)
img_copy = img.copy()[:,:,::-1] # color channel plotting mess http://stackoverflow.com/a/15074748/2256243
height = img.shape[0]
width = img.shape[1]
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3,3)) # matrix of ones
# https://code.google.com/p/pythonxy/source/browse/src/python/OpenCV/DOC/samples/python2/squares.py?spec=svn.xy-27.cd6bf12fae7ae496d581794b32fd9ac75b4eb366&repo=xy-27&r=cd6bf12fae7ae496d581794b32fd9ac75b4eb366
def angle_cos(p0, p1, p2):
d1, d2 = (p0-p1).astype('float'), (p2-p1).astype('float')
return abs( np.dot(d1, d2) / np.sqrt( np.dot(d1, d1)*np.dot(d2, d2) ) )
squares = []
all_contours = []
for gray in cv2.split(img):
dilated = cv2.dilate(src = gray, kernel = kernel, anchor = (-1,-1))
blured = cv2.medianBlur(dilated, 7)
# Shrinking followed by expanding can be used for removing isolated noise pixels
# another way to think of it is "enlarging the background"
# http://www.cs.umb.edu/~marc/cs675/cvs09-12.pdf
small = cv2.pyrDown(blured, dstsize = (width / 2, height / 2))
oversized = cv2.pyrUp(small, dstsize = (width, height))
# after seeing utility of later thresholds (non 0 threshold results)
# try instead to loop through and change thresholds in the canny filter
# also might be interesting to store the contours in different arrays for display to color them according
# to the channel that they came from
for thrs in xrange(0, 255, 26):
if thrs == 0:
edges = cv2.Canny(oversized, threshold1 = 0, threshold2 = 50, apertureSize = 3)
next = cv2.dilate(src = edges, kernel = kernel, anchor = (-1,-1))
else:
retval, next = cv2.threshold(gray, thrs, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(next, mode = cv2.RETR_LIST, method = cv2.CHAIN_APPROX_SIMPLE)
# how are the contours sorted? outwards to inwards? would be interesting to do a PVE
# sort of thing where the contours within a contour (and maybe see an elbow plot of some sort)
for cnt in contours:
all_contours.append(cnt)
cnt_len = cv2.arcLength(cnt, True)
cnt = cv2.approxPolyDP(cnt, 0.02*cnt_len, True)
if len(cnt) == 4 and cv2.contourArea(cnt) > 1000 and cv2.isContourConvex(cnt):
cnt = cnt.reshape(-1, 2)
max_cos = np.max([angle_cos( cnt[i], cnt[(i+1) % 4], cnt[(i+2) % 4] ) for i in xrange(4)])
if max_cos < 0.1:
squares.append(cnt)
# ranking of shapes
def rank(square):
formatted = np.array([[s] for s in square], np.int32)
x,y,wid,hei = cv2.boundingRect(formatted)
max_distance_from_center = math.sqrt(((width / 2))**2 + ((height / 2))**2)
distance_from_center = math.sqrt(((x + wid / 2) - (width / 2))**2 + ((y + hei / 2) - (height / 2))**2)
height_above_horizontal = (height / 2) - y if y + hei > height / 2 else hei
width_left_vertical = (width / 2) - x if x + wid > width / 2 else wid
horizontal_score = abs(float(height_above_horizontal) / hei - 0.5) * 2
vertical_score = abs(float(width_left_vertical) / wid - 0.5) * 2
if cv2.contourArea(formatted) / (width * height) > 0.98:
return 5 # max rank possible otherwise - penalize boxes that are the whole image heavily
else:
bounding_box = np.array([[[x,y]], [[x,y+hei]], [[x+wid,y+hei]], [[x+wid,y]]], dtype = np.int32)
# every separate line in this addition has a max of 1
return (distance_from_center / max_distance_from_center +
cv2.contourArea(formatted) / cv2.contourArea(bounding_box) +
cv2.contourArea(formatted) / (width * height) +
horizontal_score +
vertical_score)
sorted_squares = sorted(squares, key=lambda square: rank(square))
# visual alternative to drawing lines
def mask_image(img, square, opacity = 0.80):
overlay = img.copy()
cv2.fillPoly(overlay, [square], (255, 255, 255))
inverse_overlay = cv2.bitwise_not(overlay)
img2 = cv2.bitwise_xor(inverse_overlay, img)
cv2.addWeighted(img2, opacity, img, 1 - opacity, 0, img)
if len(sorted_squares) and rank(sorted_squares[0]) < 3:
cv2.drawContours(img, squares, -1, (0,255,255), 1) # draw all found squares
cv2.drawContours(img, [sorted_squares[0]], -1, (0,255,60), 3)
cv2.imwrite('out/' + filename, img)
with open('square_found.csv', 'a') as csvfile:
writer = csv.writer(csvfile, quoting=csv.QUOTE_MINIMAL)
writer.writerow([filename, json.dumps(sorted_squares[0].tolist()), height, width])
else:
with open("squareless.txt", "a") as f:
f.write(filename + "\n")
### Some plotting code
plt.subplot2grid((2,5), (0,0)),plt.imshow(img_copy)
plt.title('Original Image'), plt.xticks([]), plt.yticks([])
gray = cv2.split(img_copy)[0]
plt.subplot2grid((2,5), (0,1)),plt.imshow(gray, cmap = 'gray')
plt.title('Single Channel'), plt.xticks([]), plt.yticks([])
# plt.title('Original Image'), plt.xticks([]), plt.yticks([])
dilated = cv2.dilate(src = gray, kernel = kernel, anchor = (-1,-1))
plt.subplot2grid((2,5), (0,2)),plt.imshow(dilated, cmap = 'gray')
plt.title('Dilated'), plt.xticks([]), plt.yticks([])
blured = cv2.medianBlur(dilated, 7)
plt.subplot2grid((2,5), (0,3)),plt.imshow(blured, cmap = 'gray')
plt.title('Median Filter'), plt.xticks([]), plt.yticks([])
# Shrinking followed by expanding can be used for removing isolated noise pixels
# another way to think of it is "enlarging the background"
# http://www.cs.umb.edu/~marc/cs675/cvs09-12.pdf
small = cv2.pyrDown(blured, dstsize = (width / 2, height / 2))
oversized = cv2.pyrUp(small, dstsize = (width, height))
plt.subplot2grid((2,5), (0,4)),plt.imshow(oversized, cmap = 'gray')
plt.title('Resized'), plt.xticks([]), plt.yticks([])
edges = cv2.Canny(oversized, threshold1 = 0, threshold2 = 50, apertureSize = 3)
plt.subplot2grid((2,5), (1,0)),plt.imshow(edges, cmap = 'gray')
plt.title('Canny Edges'), plt.xticks([]), plt.yticks([])
dilated = cv2.dilate(src = edges, kernel = kernel, anchor = (-1,-1))
plt.subplot2grid((2,5), (1,1)),plt.imshow(dilated, cmap = 'gray')
plt.title('Dilated'), plt.xticks([]), plt.yticks([])
img_with_contours = img_copy.copy()
cv2.drawContours(img_with_contours, all_contours, -1, (0,255,60), 3)
plt.subplot2grid((2,5), (1,2)),plt.imshow(img_with_contours)
plt.title('All Contours'), plt.xticks([]), plt.yticks([])
img_with_squares = img_copy.copy()
cv2.drawContours(img_with_squares, squares, -1, (0,255,60), 3)
plt.subplot2grid((2,5), (1,3)),plt.imshow(img_with_squares)
plt.title('All Rectangles'), plt.xticks([]), plt.yticks([])
img_with_top_square = img_copy.copy()
cv2.drawContours(img_with_top_square, [sorted_squares[0]], -1, (0,255,60), 3)
plt.subplot2grid((2,5), (1,4)),plt.imshow(img_with_top_square)
plt.title('Top Ranked Shape'), plt.xticks([]), plt.yticks([])
plt.show()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment