Skip to content

Instantly share code, notes, and snippets.

@adisonhuang
Last active May 1, 2020 08:37
Show Gist options
  • Save adisonhuang/77f94b304c66a2c251dcbc8b5866c5b9 to your computer and use it in GitHub Desktop.
Save adisonhuang/77f94b304c66a2c251dcbc8b5866c5b9 to your computer and use it in GitHub Desktop.
python 函数执行时间工具类
from functools import wraps
import cProfile
from line_profiler import LineProfiler
import time
def func_time(f):
"""
简单记录执行时间
:param f:
:return:
"""
@wraps(f)
def wrapper(*args, **kwargs):
start = time.time()
result = f(*args, **kwargs)
end = time.time()
print f.__name__, 'took', end - start, 'seconds'
return result
return wrapper
def func_cprofile(f):
"""
内建分析器
194 function calls (189 primitive calls) in 0.000 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.000 0.000 <string>:1(<module>)
1 0.000 0.000 0.000 0.000 re.py:188(compile)
1 0.000 0.000 0.000 0.000 re.py:226(_compile)
1. 第一行告诉我们一共有194个函数被调用,其中189个是原生(primitive)调用,表明这些调用不涉及递归。
2. ncalls表示函数的调用次数,如果这一列有两个数值,表示有递归调用,第一个是总调用次数,第二个是原生调用次数。
3. tottime是函数内部消耗的总时间(不包括调用其他函数的时间)。
4. percall是tottime除以ncalls,表示每次调用平均消耗时间。
5. cumtime是之前所有子函数消耗时间的累积和。
6. percall是cumtime除以原生调用的数量,表示该函数调用时,每个原生调用的平均消耗时间。
7. filename:lineno(function)为被分析函数所在文件名、行号、函数名。
"""
@wraps(f)
def wrapper(*args, **kwargs):
profile = cProfile.Profile()
try:
profile.enable()
result = f(*args, **kwargs)
profile.disable()
return result
finally:
profile.print_stats(sort='time')
return wrapper
try:
from line_profiler import LineProfiler
def func_line_time(follow=[]):
"""
每行代码执行时间详细报告
:param follow: 内部调用方法
:return:
Timer unit: 1e-06 s
Timer unit: 1e-06 s
Total time: 14.4183 s
File: /xx/test.py
Function: test at line 41
Line # Hits Time Per Hit % Time Line Contents
==============================================================
41 @func_line_time()
42 def test():
43 10000001 4031936.0 0.4 28.0 for x in range(10000000):
44 10000000 10386347.0 1.0 72.0 print x
Total Time:测试代码的总运行时间
Line:代码行号
Hits:表示每行代码运行的次数
Time:每行代码运行的总时间
Per Hits:每行代码运行一次的时间
% Time:每行代码运行时间的百分比
"""
def decorate(func):
@wraps(func)
def profiled_func(*args, **kwargs):
try:
profiler = LineProfiler()
profiler.add_function(func)
for f in follow:
profiler.add_function(f)
profiler.enable_by_count()
return func(*args, **kwargs)
finally:
profiler.print_stats()
return profiled_func
return decorate
except ImportError:
def func_line_time(follow=[]):
"Helpful if you accidentally leave in production!"
def decorate(func):
@wraps(func)
def nothing(*args, **kwargs):
return func(*args, **kwargs)
return nothing
return decorate
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment