Last active
October 3, 2018 21:21
-
-
Save aditya95sriram/ecffa33089713e1ef9f74e292bae4afb to your computer and use it in GitHub Desktop.
Sample usage of cubetools.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import cubetools | |
# https://gist.github.com/aditya95sriram/8d1fccbb91dae93c4edf31cd6a22510f | |
# read_cube function reads in cube file as (numpy array, metadata) tuple | |
data, meta = cubetools.read_cube('demo.cube') | |
# volumetric data | |
print data.shape | |
# (8L, 8L, 8L) | |
# metadata | |
print meta['org'] # origin | |
# [0.0, 0.0, 0.0] | |
print meta['xvec'], meta['yvec'], meta['zvec'] | |
# [0.151178, 0.0, 0.0] [0.0, 0.151178, 0.0] [0.0, 0.0, 0.151178] | |
print meta['atoms'] | |
# [(6, [6.0, 15.117809, 15.117809, 15.117809])] | |
# write_cube function writes numpy array and metadata to file | |
# size information is inferred from numpy array and | |
# metadata doesn't contain size information | |
cubetools.write_cube(data[:5,:5,:5], meta, 'new.cube') | |
# read_imcube function reads in two cube files one containing real component | |
# of volumetric data and the other containing imaginary component | |
# as a (numpy complex128 array, metadata) tuple | |
# retains metadata from file containing real component | |
data, meta = cubetools.read_imcube('demo.cube', 'demo.cube') | |
print data.dtype | |
# complex128 | |
print data.shape | |
# (8L, 8L, 8L) | |
# write_imcube function writes numpy complex128 array and metadata to file | |
cubetools.write_imcube(data[:5,:5,:5], meta, 'new.real.cube', 'new.imag.cube') |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Cubefile created by cubetools.py | |
source: none | |
1 0.000000 0.000000 0.000000 | |
8 0.151178 0.000000 0.000000 | |
8 0.000000 0.151178 0.000000 | |
8 0.000000 0.000000 0.151178 | |
6 6.000000 15.117809 15.117809 15.117809 | |
-2.41160E+00 -1.82970E+00 -1.15690E+00 -1.74140E+00 -3.56050E+00 -5.66240E+00 | |
-6.87530E+00 -6.41720E+00 | |
-1.82970E+00 -1.45910E+00 -1.15950E+00 -1.97120E+00 -3.82710E+00 -5.84170E+00 | |
-6.90200E+00 -6.33450E+00 | |
-1.15690E+00 -1.15950E+00 -1.53610E+00 -2.74600E+00 -4.58800E+00 -6.29960E+00 | |
-6.90680E+00 -6.07500E+00 | |
-1.74140E+00 -1.97120E+00 -2.74600E+00 -4.08810E+00 -5.66240E+00 -6.78160E+00 | |
-6.70550E+00 -5.64260E+00 | |
-3.56050E+00 -3.82710E+00 -4.58800E+00 -5.66240E+00 -6.63160E+00 -6.88550E+00 | |
-6.16260E+00 -5.12310E+00 | |
-5.66240E+00 -5.84170E+00 -6.29960E+00 -6.78160E+00 -6.88550E+00 -6.33450E+00 | |
-5.40370E+00 -4.64800E+00 | |
-6.87530E+00 -6.90200E+00 -6.90680E+00 -6.70550E+00 -6.16260E+00 -5.40370E+00 | |
-4.73750E+00 -4.24790E+00 | |
-6.41720E+00 -6.33450E+00 -6.07500E+00 -5.64260E+00 -5.12310E+00 -4.64800E+00 | |
-4.24790E+00 -3.85840E+00 | |
-1.82970E+00 -1.45910E+00 -1.15950E+00 -1.97120E+00 -3.82710E+00 -5.84170E+00 | |
-6.90200E+00 -6.33450E+00 | |
-1.45910E+00 -1.24750E+00 -1.23370E+00 -2.21890E+00 -4.08810E+00 -6.00790E+00 | |
-6.91580E+00 -6.24940E+00 | |
-1.15950E+00 -1.23370E+00 -1.74140E+00 -3.01770E+00 -4.82450E+00 -6.42450E+00 | |
-6.88550E+00 -5.98700E+00 | |
-1.97120E+00 -2.21890E+00 -3.01770E+00 -4.34230E+00 -5.84170E+00 -6.83530E+00 | |
-6.64140E+00 -5.56060E+00 | |
-3.82710E+00 -4.08810E+00 -4.82450E+00 -5.84170E+00 -6.71350E+00 -6.85380E+00 | |
-6.07510E+00 -5.06010E+00 | |
-5.84170E+00 -6.00790E+00 -6.42450E+00 -6.83530E+00 -6.85380E+00 -6.24940E+00 | |
-5.32940E+00 -4.60590E+00 | |
-6.90200E+00 -6.91580E+00 -6.88550E+00 -6.64140E+00 -6.07510E+00 -5.32940E+00 | |
-4.69180E+00 -4.21580E+00 | |
-6.33450E+00 -6.24940E+00 -5.98700E+00 -5.56060E+00 -5.06010E+00 -4.60590E+00 | |
-4.21580E+00 -3.83050E+00 | |
-1.15690E+00 -1.15950E+00 -1.53610E+00 -2.74600E+00 -4.58800E+00 -6.29960E+00 | |
-6.90680E+00 -6.07500E+00 | |
-1.15950E+00 -1.23370E+00 -1.74140E+00 -3.01770E+00 -4.82450E+00 -6.42450E+00 | |
-6.88550E+00 -5.98700E+00 | |
-1.53610E+00 -1.74140E+00 -2.47840E+00 -3.82710E+00 -5.47050E+00 -6.71360E+00 | |
-6.76310E+00 -5.72660E+00 | |
-2.74600E+00 -3.01770E+00 -3.82710E+00 -5.05100E+00 -6.29960E+00 -6.91580E+00 | |
-6.41700E+00 -5.32930E+00 | |
-4.58800E+00 -4.82450E+00 -5.47050E+00 -6.29960E+00 -6.87530E+00 -6.70560E+00 | |
-5.81230E+00 -4.88760E+00 | |
-6.29960E+00 -6.42450E+00 -6.71360E+00 -6.91580E+00 -6.70560E+00 -5.98700E+00 | |
-5.12300E+00 -4.48830E+00 | |
-6.90680E+00 -6.88550E+00 -6.76310E+00 -6.41700E+00 -5.81230E+00 -5.12300E+00 | |
-4.56530E+00 -4.12230E+00 | |
-6.07500E+00 -5.98700E+00 -5.72660E+00 -5.32930E+00 -4.88760E+00 -4.48830E+00 | |
-4.12230E+00 -3.74960E+00 | |
-1.74140E+00 -1.97120E+00 -2.74600E+00 -4.08810E+00 -5.66240E+00 -6.78160E+00 | |
-6.70550E+00 -5.64260E+00 | |
-1.97120E+00 -2.21890E+00 -3.01770E+00 -4.34230E+00 -5.84170E+00 -6.83530E+00 | |
-6.64140E+00 -5.56060E+00 | |
-2.74600E+00 -3.01770E+00 -3.82710E+00 -5.05100E+00 -6.29960E+00 -6.91580E+00 | |
-6.41700E+00 -5.32930E+00 | |
-4.08810E+00 -4.34230E+00 -5.05100E+00 -6.00770E+00 -6.78150E+00 -6.81270E+00 | |
-5.98690E+00 -4.99990E+00 | |
-5.66240E+00 -5.84170E+00 -6.29960E+00 -6.78150E+00 -6.88540E+00 -6.33440E+00 | |
-5.40370E+00 -4.64810E+00 | |
-6.78160E+00 -6.83530E+00 -6.91580E+00 -6.81270E+00 -6.33440E+00 -5.56060E+00 | |
-4.83520E+00 -4.31310E+00 | |
-6.70550E+00 -6.64140E+00 -6.41700E+00 -5.98690E+00 -5.40370E+00 -4.83520E+00 | |
-4.38080E+00 -3.97250E+00 | |
-5.64260E+00 -5.56060E+00 -5.32930E+00 -4.99990E+00 -4.64810E+00 -4.31310E+00 | |
-3.97250E+00 -3.62310E+00 | |
-3.56050E+00 -3.82710E+00 -4.58800E+00 -5.66240E+00 -6.63160E+00 -6.88550E+00 | |
-6.16260E+00 -5.12310E+00 | |
-3.82710E+00 -4.08810E+00 -4.82450E+00 -5.84170E+00 -6.71350E+00 -6.85380E+00 | |
-6.07510E+00 -5.06010E+00 | |
-4.58800E+00 -4.82450E+00 -5.47050E+00 -6.29960E+00 -6.87530E+00 -6.70560E+00 | |
-5.81230E+00 -4.88760E+00 | |
-5.66240E+00 -5.84170E+00 -6.29960E+00 -6.78150E+00 -6.88540E+00 -6.33440E+00 | |
-5.40370E+00 -4.64810E+00 | |
-6.63160E+00 -6.71350E+00 -6.87530E+00 -6.88540E+00 -6.49600E+00 -5.72650E+00 | |
-4.94240E+00 -4.38080E+00 | |
-6.88550E+00 -6.85380E+00 -6.70560E+00 -6.33440E+00 -5.72650E+00 -5.06010E+00 | |
-4.52620E+00 -4.09160E+00 | |
-6.16260E+00 -6.07510E+00 -5.81230E+00 -5.40370E+00 -4.94240E+00 -4.52620E+00 | |
-4.15310E+00 -3.77630E+00 | |
-5.12310E+00 -5.06010E+00 -4.88760E+00 -4.64810E+00 -4.38080E+00 -4.09160E+00 | |
-3.77630E+00 -3.46350E+00 | |
-5.66240E+00 -5.84170E+00 -6.29960E+00 -6.78160E+00 -6.88550E+00 -6.33450E+00 | |
-5.40370E+00 -4.64800E+00 | |
-5.84170E+00 -6.00790E+00 -6.42450E+00 -6.83530E+00 -6.85380E+00 -6.24940E+00 | |
-5.32940E+00 -4.60590E+00 | |
-6.29960E+00 -6.42450E+00 -6.71360E+00 -6.91580E+00 -6.70560E+00 -5.98700E+00 | |
-5.12300E+00 -4.48830E+00 | |
-6.78160E+00 -6.83530E+00 -6.91580E+00 -6.81270E+00 -6.33440E+00 -5.56060E+00 | |
-4.83520E+00 -4.31310E+00 | |
-6.88550E+00 -6.85380E+00 -6.70560E+00 -6.33440E+00 -5.72650E+00 -5.06010E+00 | |
-4.52620E+00 -4.09160E+00 | |
-6.33450E+00 -6.24940E+00 -5.98700E+00 -5.56060E+00 -5.06010E+00 -4.60580E+00 | |
-4.21570E+00 -3.83050E+00 | |
-5.40370E+00 -5.32940E+00 -5.12300E+00 -4.83520E+00 -4.52620E+00 -4.21570E+00 | |
-3.88620E+00 -3.55230E+00 | |
-4.64800E+00 -4.60590E+00 -4.48830E+00 -4.31310E+00 -4.09160E+00 -3.83050E+00 | |
-3.55230E+00 -3.28300E+00 | |
-6.87530E+00 -6.90200E+00 -6.90680E+00 -6.70550E+00 -6.16260E+00 -5.40370E+00 | |
-4.73750E+00 -4.24790E+00 | |
-6.90200E+00 -6.91580E+00 -6.88550E+00 -6.64140E+00 -6.07510E+00 -5.32940E+00 | |
-4.69180E+00 -4.21580E+00 | |
-6.90680E+00 -6.88550E+00 -6.76310E+00 -6.41700E+00 -5.81230E+00 -5.12300E+00 | |
-4.56530E+00 -4.12230E+00 | |
-6.70550E+00 -6.64140E+00 -6.41700E+00 -5.98690E+00 -5.40370E+00 -4.83520E+00 | |
-4.38080E+00 -3.97250E+00 | |
-6.16260E+00 -6.07510E+00 -5.81230E+00 -5.40370E+00 -4.94240E+00 -4.52620E+00 | |
-4.15310E+00 -3.77630E+00 | |
-5.40370E+00 -5.32940E+00 -5.12300E+00 -4.83520E+00 -4.52620E+00 -4.21570E+00 | |
-3.88620E+00 -3.55230E+00 | |
-4.73750E+00 -4.69180E+00 -4.56530E+00 -4.38080E+00 -4.15310E+00 -3.88620E+00 | |
-3.59910E+00 -3.32130E+00 | |
-4.24790E+00 -4.21580E+00 -4.12230E+00 -3.97250E+00 -3.77630E+00 -3.55230E+00 | |
-3.32130E+00 -3.08730E+00 | |
-6.41720E+00 -6.33450E+00 -6.07500E+00 -5.64260E+00 -5.12310E+00 -4.64800E+00 | |
-4.24790E+00 -3.85840E+00 | |
-6.33450E+00 -6.24940E+00 -5.98700E+00 -5.56060E+00 -5.06010E+00 -4.60590E+00 | |
-4.21580E+00 -3.83050E+00 | |
-6.07500E+00 -5.98700E+00 -5.72660E+00 -5.32930E+00 -4.88760E+00 -4.48830E+00 | |
-4.12230E+00 -3.74960E+00 | |
-5.64260E+00 -5.56060E+00 -5.32930E+00 -4.99990E+00 -4.64810E+00 -4.31310E+00 | |
-3.97250E+00 -3.62310E+00 | |
-5.12310E+00 -5.06010E+00 -4.88760E+00 -4.64810E+00 -4.38080E+00 -4.09160E+00 | |
-3.77630E+00 -3.46350E+00 | |
-4.64800E+00 -4.60590E+00 -4.48830E+00 -4.31310E+00 -4.09160E+00 -3.83050E+00 | |
-3.55230E+00 -3.28300E+00 | |
-4.24790E+00 -4.21580E+00 -4.12230E+00 -3.97250E+00 -3.77630E+00 -3.55230E+00 | |
-3.32130E+00 -3.08730E+00 | |
-3.85840E+00 -3.83050E+00 -3.74960E+00 -3.62310E+00 -3.46350E+00 -3.28300E+00 | |
-3.08730E+00 -2.87920E+00 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment