Skip to content

Instantly share code, notes, and snippets.

@adityajn105
Created July 17, 2018 08:32
Show Gist options
  • Save adityajn105/062671d9534aced74a8995901176ae94 to your computer and use it in GitHub Desktop.
Save adityajn105/062671d9534aced74a8995901176ae94 to your computer and use it in GitHub Desktop.
Neural Network for MNIST using TensorFlow
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/mnist",one_hot=True)
n_nodes_hl1 = 500
n_nodes_hl2 = 500
n_nodes_hl3 = 500
n_classes = 10
batch_size = 100
x = tf.placeholder('float',[None,784]) #if shape is not defined, we can feed in any shape
y = tf.placeholder('float',[None,10])
def neural_network_model(data):
hidden_layer_1 = {'weights':tf.Variable(tf.random_normal([784,n_nodes_hl1])),
'biases':tf.Variable(tf.random_normal([n_nodes_hl1]))}
hidden_layer_2 = {'weights':tf.Variable(tf.random_normal([n_nodes_hl1,n_nodes_hl2])),
'biases':tf.Variable(tf.random_normal([n_nodes_hl2]))}
hidden_layer_3 = {'weights':tf.Variable(tf.random_normal([n_nodes_hl2,n_nodes_hl3])),
'biases':tf.Variable(tf.random_normal([n_nodes_hl3]))}
output_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl3,n_classes])),
'biases':tf.Variable(tf.random_normal([n_classes]))}
l1 = tf.add(tf.matmul(data,hidden_layer_1['weights']),hidden_layer_1['biases'])
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(l1,hidden_layer_2['weights']),hidden_layer_2['biases'])
l2 = tf.nn.relu(l2)
l3 = tf.add(tf.matmul(l2,hidden_layer_3['weights']),hidden_layer_3['biases'])
l3 = tf.nn.relu(l3)
output = tf.add(tf.matmul(l3,output_layer['weights']),output_layer['biases'])
return output #tf.nn.softmax(output)
def train_neural_network(x):
prediction = neural_network_model(x)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction,labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)
hm_epochs = 10
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(hm_epochs):
epoch_loss = 0
for _ in range(int(mnist.train.num_examples/batch_size)):
epoch_x,epoch_y = mnist.train.next_batch(batch_size)
_, c = sess.run([optimizer,cost],feed_dict={x:epoch_x,y:epoch_y})
epoch_loss+=c
print('Epoch {}/{} completed, loss : {}'.format(epoch+1,hm_epochs,epoch_loss))
correct = tf.equal(tf.argmax(prediction,1),tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct,'float'))
print('Accuracy : {}'.format(accuracy.eval({x:mnist.test.images, y:mnist.test.labels})))
train_neural_network(x)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment