Created
July 17, 2018 08:32
-
-
Save adityajn105/062671d9534aced74a8995901176ae94 to your computer and use it in GitHub Desktop.
Neural Network for MNIST using TensorFlow
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
from tensorflow.examples.tutorials.mnist import input_data | |
mnist = input_data.read_data_sets("/tmp/mnist",one_hot=True) | |
n_nodes_hl1 = 500 | |
n_nodes_hl2 = 500 | |
n_nodes_hl3 = 500 | |
n_classes = 10 | |
batch_size = 100 | |
x = tf.placeholder('float',[None,784]) #if shape is not defined, we can feed in any shape | |
y = tf.placeholder('float',[None,10]) | |
def neural_network_model(data): | |
hidden_layer_1 = {'weights':tf.Variable(tf.random_normal([784,n_nodes_hl1])), | |
'biases':tf.Variable(tf.random_normal([n_nodes_hl1]))} | |
hidden_layer_2 = {'weights':tf.Variable(tf.random_normal([n_nodes_hl1,n_nodes_hl2])), | |
'biases':tf.Variable(tf.random_normal([n_nodes_hl2]))} | |
hidden_layer_3 = {'weights':tf.Variable(tf.random_normal([n_nodes_hl2,n_nodes_hl3])), | |
'biases':tf.Variable(tf.random_normal([n_nodes_hl3]))} | |
output_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl3,n_classes])), | |
'biases':tf.Variable(tf.random_normal([n_classes]))} | |
l1 = tf.add(tf.matmul(data,hidden_layer_1['weights']),hidden_layer_1['biases']) | |
l1 = tf.nn.relu(l1) | |
l2 = tf.add(tf.matmul(l1,hidden_layer_2['weights']),hidden_layer_2['biases']) | |
l2 = tf.nn.relu(l2) | |
l3 = tf.add(tf.matmul(l2,hidden_layer_3['weights']),hidden_layer_3['biases']) | |
l3 = tf.nn.relu(l3) | |
output = tf.add(tf.matmul(l3,output_layer['weights']),output_layer['biases']) | |
return output #tf.nn.softmax(output) | |
def train_neural_network(x): | |
prediction = neural_network_model(x) | |
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction,labels=y)) | |
optimizer = tf.train.AdamOptimizer().minimize(cost) | |
hm_epochs = 10 | |
with tf.Session() as sess: | |
sess.run(tf.global_variables_initializer()) | |
for epoch in range(hm_epochs): | |
epoch_loss = 0 | |
for _ in range(int(mnist.train.num_examples/batch_size)): | |
epoch_x,epoch_y = mnist.train.next_batch(batch_size) | |
_, c = sess.run([optimizer,cost],feed_dict={x:epoch_x,y:epoch_y}) | |
epoch_loss+=c | |
print('Epoch {}/{} completed, loss : {}'.format(epoch+1,hm_epochs,epoch_loss)) | |
correct = tf.equal(tf.argmax(prediction,1),tf.argmax(y,1)) | |
accuracy = tf.reduce_mean(tf.cast(correct,'float')) | |
print('Accuracy : {}'.format(accuracy.eval({x:mnist.test.images, y:mnist.test.labels}))) | |
train_neural_network(x) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment