Skip to content

Instantly share code, notes, and snippets.

@adityapatadia
Last active October 5, 2018 15:11
Show Gist options
  • Save adityapatadia/6c7f98c37ee5166f314c6a5009222381 to your computer and use it in GitHub Desktop.
Save adityapatadia/6c7f98c37ee5166f314c6a5009222381 to your computer and use it in GitHub Desktop.
Simple Neural Network in Python which learns AND gate
import numpy as np
def sigmoid(x, derivative=False):
return x*(1-x) if derivative else 1/(1+np.exp(-x))
class NeuralNetwork:
def __init__(self, x, y):
self.input = x
self.weights1 = np.random.rand(self.input.shape[1],4)
self.weights2 = np.random.rand(4,1)
self.y = y
self.output = np.zeros(self.y.shape)
def feedforward(self):
self.layer1 = sigmoid(np.dot(self.input, self.weights1))
self.output = sigmoid(np.dot(self.layer1, self.weights2))
def backprop(self):
# application of the chain rule to find derivative of the loss function with respect to weights2 and weights1
d_weights2 = np.dot(self.layer1.T, (2*(self.y - self.output) * sigmoid(self.output, derivative=True)))
d_weights1 = np.dot(self.input.T, (np.dot(2*(self.y - self.output) * sigmoid(self.output, derivative=True), self.weights2.T) * sigmoid(self.layer1, derivative=True)))
# update the weights with the derivative (slope) of the loss function
self.weights1 += d_weights1
self.weights2 += d_weights2
if __name__ == "__main__":
X = np.array([[0,0],
[0,1],
[1,0],
[1,1]])
y = np.array([[0],[0],[0],[1]])
nn = NeuralNetwork(X,y)
for i in range(1500):
nn.feedforward()
nn.backprop()
print(nn.output)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment