Created
November 15, 2018 16:18
-
-
Save adrianparvino/6fc6c5e3458713757f0bd4eb0cbdb396 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Require Import ZArith_base. | |
Require Import ZArith.BinInt. | |
Require Import Classes.RelationClasses. | |
Require Import Omega. | |
Local Open Scope Z_scope. | |
Definition Divisible (x n : Z) : Prop := exists (k : Z), k*n = x. | |
Definition Modulo (n x y : Z) : Prop := Divisible (x - y) n. | |
Notation "( x == y ) 'mod' n" := (Modulo n x y) (at level 50). | |
Definition Even (x : Z) := (x == 0) mod 2. | |
Definition Odd (x : Z) := (x == 1) mod 2. | |
Theorem refl_mod : forall n x : Z, (x == x) mod n. | |
Proof. | |
unfold Modulo, Divisible. | |
intros until 0. | |
exists 0. | |
omega. | |
Qed. | |
Instance refl_mod_inst : forall n : Z, Reflexive (Modulo n) := | |
{ reflexivity := refl_mod n | |
}. | |
Theorem symm_mod : forall n x y : Z, (x == y) mod n -> (y == x) mod n. | |
Proof. | |
unfold Modulo, Divisible. | |
intros until 0. | |
intros [ k ]. | |
exists (-k). | |
rewrite Z.mul_opp_l. | |
omega. | |
Qed. | |
Instance symm_mod_inst : forall n : Z, Symmetric (Modulo n) := | |
{ symmetry := symm_mod n | |
}. | |
Theorem trans_mod : forall n x y z : Z, (x == y) mod n -> (y == z) mod n -> (x == z) mod n . | |
Proof. | |
intros until 0. | |
unfold Modulo, Divisible. | |
intros [ k ] [ k' ]. | |
exists (k + k'). | |
rewrite Zmult_plus_distr_l. | |
omega. | |
Qed. | |
Instance trans_mod_inst : forall n : Z, Transitive (Modulo n) := | |
{ transitivity := trans_mod n | |
}. | |
Theorem modulo_addition : forall n a x y : Z, | |
(x == y) mod n -> (x + a == y + a) mod n. | |
Proof. | |
intros until 0. | |
unfold Modulo, Divisible. | |
unfold "x - y". | |
intros [ k ]. | |
exists k. | |
omega. | |
Qed. | |
Theorem addition_modulo : forall n x y a b : Z, | |
(x == y) mod n -> (a == b) mod n -> (x + a == y + b) mod n. | |
Proof. | |
intros. | |
apply (modulo_addition n a) in H. | |
apply (modulo_addition n y) in H0. | |
rewrite Zplus_comm, (Zplus_comm b y) in H0. | |
apply (trans_mod _ _ _ _ H H0). | |
Qed. | |
Theorem even_additon : forall x y : Z, | |
Even x -> Even y -> Even (x + y). | |
Proof. | |
unfold Even. | |
intros. | |
rewrite <- Z.add_0_l. | |
apply (addition_modulo _ _ _ _ _ H H0). | |
Qed. | |
Theorem odd_additon : forall x y : Z, | |
Even x -> Odd y -> Odd (x + y). | |
Proof. | |
unfold Even, Odd. | |
intros. | |
rewrite <- Z.add_0_l. | |
apply (addition_modulo _ _ _ _ _ H H0). | |
Qed. | |
Theorem odd2_additon : forall x y : Z, | |
Odd x -> Odd y -> Even (x + y). | |
Proof. | |
unfold Even, Odd. | |
intros. | |
assert ((2 == 0) mod 2). | |
unfold Modulo, Divisible. | |
exists 1. | |
auto. | |
assert ((x + y == 1 + 1) mod 2) as H2 by apply (addition_modulo _ x 1 y 1 H H0) . | |
simpl in H2. | |
apply (trans_mod _ _ _ _ H2 H1). | |
Qed. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment