Skip to content

Instantly share code, notes, and snippets.

@adtzlr
Created December 15, 2023 08:44
Show Gist options
  • Save adtzlr/44314a16ef2a00945e53eb438b7bf87e to your computer and use it in GitHub Desktop.
Save adtzlr/44314a16ef2a00945e53eb438b7bf87e to your computer and use it in GitHub Desktop.
3D Finite Element Analysis in 100 Lines of Python Code (Alternative Assembly)
import numpy as np
from types import SimpleNamespace as SN
from scipy.sparse import csr_matrix as sparse
from scipy.sparse.linalg import spsolve
import meshio
def Mesh(npoints, a=0, b=1):
grid = np.linspace(a, b, npoints)
points = np.pad(grid[:, None], ((0, 0), (0, 2)))
cells = np.arange(npoints).repeat(2)[1:-1].reshape(-1, 2)
for dim, sl in enumerate([slice(None, None, -1), slice(None)]):
c = [cells + len(points) * a for a in np.arange(npoints)]
points = np.vstack([points + np.insert(np.zeros(2), dim + 1, h) for h in grid])
cells = np.vstack([np.hstack((a, b[:, sl])) for a, b in zip(c[:-1], c[1:])])
return SN(points=points, cells=cells)
def Hexahedron(points):
r, s, t = points
a = np.array([[-1, 1, 1, -1, -1, 1, 1, -1]]).T
b = np.array([[-1, -1, 1, 1, -1, -1, 1, 1]]).T
c = np.array([[-1, -1, -1, -1, 1, 1, 1, 1]]).T
ar, bs, ct = 1 + a * r, 1 + b * s, 1 + c * t
gradient = np.stack([a * bs * ct, ar * b * ct, ar * bs * c], axis=1)
return SN(function=ar * bs * ct / 8, gradient=gradient / 8)
def Domain(mesh, Element, quadrature):
element = Element(quadrature.points)
dXdr = np.einsum("cpi,pjq->ijcq", mesh.points[mesh.cells], element.gradient)
drdX = np.linalg.inv(dXdr.T).T
return SN(
mesh=mesh,
element=element,
gradient=np.einsum("piq,ijcq->pjcq", element.gradient, drdX),
dx=quadrature.weights * np.linalg.det(dXdr.T).T,
)
def VectorField(region, values):
def grad(values):
return np.einsum("cpi,pjcq->ijcq", values[region.mesh.cells], region.gradient)
return SN(region=region, values=values, gradient=grad)
def Assemble(field, lmbda, mu):
ascontiguous = lambda *args: [np.ascontiguousarray(x) for x in args]
sym = lambda x: (x + np.einsum("ij...->ji...", x)) / 2
dya = lambda x, y: np.einsum("ij...,kl...->ijkl...", x, y)
cdya_ik = lambda x, y: np.einsum("ik...,jl...->ijkl...", x, y)
cdya_il = lambda x, y: np.einsum("il...,kj...->ijkl...", x, y)
cdya = lambda x, y: (cdya_ik(x, y) + cdya_il(x, y)) / 2
dhdX = ascontiguous(field.region.gradient)[0]
dudX = field.gradient(field.values)
dV = field.region.dx
ε = sym(dudX)
I = np.eye(3)[..., None, None]
σ = 2 * mu * ε + lmbda * np.trace(ε) * I
C = 2 * mu * cdya(I, I) + lmbda * dya(I, I)
vector = np.einsum("ajcq,ijcq,cq->aic", dhdX, σ, dV, optimize=True)
matrix = np.einsum("ajcq,ijklcq,blcq,cq->aibkc", dhdX, C, dhdX, dV, optimize=True)
idx = 3 * np.repeat(mesh.cells, 3) + np.tile(np.arange(3), mesh.cells.size)
idx = idx.reshape(*mesh.cells.shape, 3)
vidx = (idx.ravel(), np.zeros_like(idx.ravel()))
midx = (
np.repeat(idx, 3 * idx.shape[1]),
np.tile(idx, (1, idx.shape[1] * 3, 1)).ravel(),
)
return SN(
vector=sparse((vector.transpose([2, 0, 1]).ravel(), vidx)),
matrix=sparse((matrix.transpose([4, 0, 1, 2, 3]).ravel(), midx)),
)
mesh = Mesh(npoints=16, a=2, b=5)
quadrature = SN(
points=np.concatenate(np.meshgrid([-1, 1], [-1, 1], [-1, 1])).reshape(3, -1)
/ np.sqrt(3),
weights=np.ones(8),
)
region = Domain(mesh, Hexahedron, quadrature)
field = VectorField(region, values=np.zeros_like(mesh.points))
extforce = np.zeros_like(mesh.points)
extforce[:, 0][mesh.points[:, 0] == 5] = -3**2 / 4 / 16**2
dofs = np.arange(mesh.points.size).reshape(mesh.points.shape)
dof = SN(fixed=dofs[mesh.points[:, 0] == 2].ravel())
dof.active = np.delete(dofs.ravel(), dof.fixed)
b = extforce.ravel()[dof.active]
for iteration in range(8):
system = Assemble(field, lmbda=1.0, mu=2.0)
A = system.matrix[dof.active, :][:, dof.active]
field.values.ravel()[dof.active] += spsolve(A, b).ravel()
b = (extforce.ravel() - system.vector.toarray().ravel())[dof.active]
norm = np.linalg.norm(b)
print(f"Iteration {iteration + 1} | norm(force)={norm:1.2e}")
if norm < np.sqrt(np.finfo(float).eps):
break
meshio.Mesh(
mesh.points, [("hexahedron", mesh.cells)], point_data={"displacement": field.values}
).write("result.vtk")
@adtzlr
Copy link
Author

adtzlr commented Oct 22, 2024

This is the outline how FElupe works!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment