Created
December 15, 2023 08:44
-
-
Save adtzlr/44314a16ef2a00945e53eb438b7bf87e to your computer and use it in GitHub Desktop.
3D Finite Element Analysis in 100 Lines of Python Code (Alternative Assembly)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from types import SimpleNamespace as SN | |
from scipy.sparse import csr_matrix as sparse | |
from scipy.sparse.linalg import spsolve | |
import meshio | |
def Mesh(npoints, a=0, b=1): | |
grid = np.linspace(a, b, npoints) | |
points = np.pad(grid[:, None], ((0, 0), (0, 2))) | |
cells = np.arange(npoints).repeat(2)[1:-1].reshape(-1, 2) | |
for dim, sl in enumerate([slice(None, None, -1), slice(None)]): | |
c = [cells + len(points) * a for a in np.arange(npoints)] | |
points = np.vstack([points + np.insert(np.zeros(2), dim + 1, h) for h in grid]) | |
cells = np.vstack([np.hstack((a, b[:, sl])) for a, b in zip(c[:-1], c[1:])]) | |
return SN(points=points, cells=cells) | |
def Hexahedron(points): | |
r, s, t = points | |
a = np.array([[-1, 1, 1, -1, -1, 1, 1, -1]]).T | |
b = np.array([[-1, -1, 1, 1, -1, -1, 1, 1]]).T | |
c = np.array([[-1, -1, -1, -1, 1, 1, 1, 1]]).T | |
ar, bs, ct = 1 + a * r, 1 + b * s, 1 + c * t | |
gradient = np.stack([a * bs * ct, ar * b * ct, ar * bs * c], axis=1) | |
return SN(function=ar * bs * ct / 8, gradient=gradient / 8) | |
def Domain(mesh, Element, quadrature): | |
element = Element(quadrature.points) | |
dXdr = np.einsum("cpi,pjq->ijcq", mesh.points[mesh.cells], element.gradient) | |
drdX = np.linalg.inv(dXdr.T).T | |
return SN( | |
mesh=mesh, | |
element=element, | |
gradient=np.einsum("piq,ijcq->pjcq", element.gradient, drdX), | |
dx=quadrature.weights * np.linalg.det(dXdr.T).T, | |
) | |
def VectorField(region, values): | |
def grad(values): | |
return np.einsum("cpi,pjcq->ijcq", values[region.mesh.cells], region.gradient) | |
return SN(region=region, values=values, gradient=grad) | |
def Assemble(field, lmbda, mu): | |
ascontiguous = lambda *args: [np.ascontiguousarray(x) for x in args] | |
sym = lambda x: (x + np.einsum("ij...->ji...", x)) / 2 | |
dya = lambda x, y: np.einsum("ij...,kl...->ijkl...", x, y) | |
cdya_ik = lambda x, y: np.einsum("ik...,jl...->ijkl...", x, y) | |
cdya_il = lambda x, y: np.einsum("il...,kj...->ijkl...", x, y) | |
cdya = lambda x, y: (cdya_ik(x, y) + cdya_il(x, y)) / 2 | |
dhdX = ascontiguous(field.region.gradient)[0] | |
dudX = field.gradient(field.values) | |
dV = field.region.dx | |
ε = sym(dudX) | |
I = np.eye(3)[..., None, None] | |
σ = 2 * mu * ε + lmbda * np.trace(ε) * I | |
C = 2 * mu * cdya(I, I) + lmbda * dya(I, I) | |
vector = np.einsum("ajcq,ijcq,cq->aic", dhdX, σ, dV, optimize=True) | |
matrix = np.einsum("ajcq,ijklcq,blcq,cq->aibkc", dhdX, C, dhdX, dV, optimize=True) | |
idx = 3 * np.repeat(mesh.cells, 3) + np.tile(np.arange(3), mesh.cells.size) | |
idx = idx.reshape(*mesh.cells.shape, 3) | |
vidx = (idx.ravel(), np.zeros_like(idx.ravel())) | |
midx = ( | |
np.repeat(idx, 3 * idx.shape[1]), | |
np.tile(idx, (1, idx.shape[1] * 3, 1)).ravel(), | |
) | |
return SN( | |
vector=sparse((vector.transpose([2, 0, 1]).ravel(), vidx)), | |
matrix=sparse((matrix.transpose([4, 0, 1, 2, 3]).ravel(), midx)), | |
) | |
mesh = Mesh(npoints=16, a=2, b=5) | |
quadrature = SN( | |
points=np.concatenate(np.meshgrid([-1, 1], [-1, 1], [-1, 1])).reshape(3, -1) | |
/ np.sqrt(3), | |
weights=np.ones(8), | |
) | |
region = Domain(mesh, Hexahedron, quadrature) | |
field = VectorField(region, values=np.zeros_like(mesh.points)) | |
extforce = np.zeros_like(mesh.points) | |
extforce[:, 0][mesh.points[:, 0] == 5] = -3**2 / 4 / 16**2 | |
dofs = np.arange(mesh.points.size).reshape(mesh.points.shape) | |
dof = SN(fixed=dofs[mesh.points[:, 0] == 2].ravel()) | |
dof.active = np.delete(dofs.ravel(), dof.fixed) | |
b = extforce.ravel()[dof.active] | |
for iteration in range(8): | |
system = Assemble(field, lmbda=1.0, mu=2.0) | |
A = system.matrix[dof.active, :][:, dof.active] | |
field.values.ravel()[dof.active] += spsolve(A, b).ravel() | |
b = (extforce.ravel() - system.vector.toarray().ravel())[dof.active] | |
norm = np.linalg.norm(b) | |
print(f"Iteration {iteration + 1} | norm(force)={norm:1.2e}") | |
if norm < np.sqrt(np.finfo(float).eps): | |
break | |
meshio.Mesh( | |
mesh.points, [("hexahedron", mesh.cells)], point_data={"displacement": field.values} | |
).write("result.vtk") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
This is the outline how FElupe works!