Created
August 17, 2024 07:02
-
-
Save adtzlr/dec05a39fbc3741c1d08b1514b8cb911 to your computer and use it in GitHub Desktop.
1D Finite Element Analysis in 100 Lines of Python Code (named tuple)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from collections import namedtuple | |
from scipy.sparse import csr_array as sparray | |
from scipy.sparse.linalg import spsolve | |
import matplotlib.pyplot as plt | |
def Mesh(npoints): | |
points = np.linspace(0, 1, npoints) | |
cells = np.arange(len(points)).repeat(2)[1:-1].reshape(-1, 2) | |
return namedtuple("Mesh", ("points", "cells"))(points, cells) | |
def Element(points): | |
function = np.array([1 - points, 1 + points]) / 2 | |
gradient = np.array([-np.ones_like(points), np.ones_like(points)]) / 2 | |
return namedtuple("Element", ("function", "gradient"))(function, gradient) | |
def Region(mesh, Element): | |
quadrature_points = np.array([-1, 1]) / np.sqrt(3) | |
quadrature_weights = np.ones([1, 1]) | |
element = Element(quadrature_points) | |
gradient = mesh.points[mesh.cells] @ element.gradient | |
return namedtuple("Region", ("mesh", "element", "gradient", "dx"))( | |
mesh=mesh, | |
element=element, | |
gradient=element.gradient[..., None, :] / gradient, | |
dx=quadrature_weights * gradient, | |
) | |
def Field(region, values): | |
return namedtuple("Field", ("region", "values"))(region, values) | |
def SolidBody(field, E, A): | |
def gradient(field): | |
region = field.region | |
return (field.values[region.mesh.cells] * region.gradient.T).sum(-1).T | |
stretch = 1 + gradient(field) | |
return namedtuple("SolidBody", ("force", "stiffness", "field"))( | |
force=E * A * (stretch - 1 / stretch**2), | |
stiffness=E * A * (1 + 2 / stretch**3), | |
field=field, | |
) | |
def Assemble(solid): | |
dx = solid.field.region.dx | |
gradv = solid.field.region.gradient[:, None] | |
gradu = solid.field.region.gradient[None, :] | |
vector = gradv * solid.force * dx | |
matrix = gradv * solid.stiffness * gradu * dx | |
vidx = (mesh.cells.T.ravel(), np.zeros(mesh.cells.size, dtype=int)) | |
midx = ( | |
np.tile(mesh.cells.T.ravel(), len(mesh.cells.T)), | |
np.repeat(mesh.cells.T.ravel(), len(mesh.cells.T)), | |
) | |
return namedtuple("Assemble", ("vector", "matrix"))( | |
vector=sparray((vector.sum(axis=-1).ravel(), vidx)).toarray().ravel(), | |
matrix=sparray((matrix.sum(axis=-1).ravel(), midx)), | |
) | |
mesh = Mesh(npoints=10001) | |
region = Region(mesh, Element) | |
field = Field(region, values=np.zeros_like(mesh.points)) | |
dof = namedtuple("dof", ("fixed", "active"))( | |
fixed=np.arange(1), active=np.arange(len(mesh.points))[1:] | |
) | |
extforce = np.append(np.zeros(len(mesh.points) - 1), 1) | |
for iteration in range(8): | |
system = Assemble(SolidBody(field, E=1, A=1)) | |
A = system.matrix[dof.active, :][:, dof.active] | |
b = extforce[dof.active] - system.vector[dof.active] | |
norm = np.linalg.norm(b) | |
print(f"Iteration {iteration + 1} | norm(force)={norm:1.2e}") | |
if norm < 1e-3: | |
break | |
x = spsolve(A, b) | |
field.values[dof.active] += x | |
plt.plot(field.values + mesh.points, np.zeros_like(mesh.points), "C0o-") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment