Created
          June 2, 2015 15:13 
        
      - 
      
- 
        Save adusak/367e361d39abc0ca2238 to your computer and use it in GitHub Desktop. 
    Newtonův fraktál
  
        
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
  | from sys import maxsize | |
| from PIL import Image | |
| from python.less7.madelbrot import rgb | |
| def newt_1(z): | |
| return z ** 3 - 1 | |
| def newt_2(z): | |
| return z ** 3 - z | |
| def newton_fractal(width, steps, zoom, complex_function=newt_1, name="newton.png"): | |
| real_denom = abs(zoom[1][0] - zoom[0][0]) | |
| imag_denom = abs(zoom[1][1] - zoom[0][1]) | |
| box_ratio = imag_denom / real_denom | |
| height = round(width * box_ratio) | |
| im = Image.new("RGB", (width, height), "white") | |
| eps = 1e-5 | |
| max_s = 0 | |
| min_s = maxsize | |
| points = [] | |
| for x in range(width): | |
| for y in range(height): | |
| real = x / (width / real_denom) + zoom[0][0] | |
| imag = y / (height / imag_denom) + zoom[0][1] | |
| zn = complex(real, imag) | |
| i = 0 | |
| for i in range(steps): | |
| if zn ** 2 == 0: | |
| break | |
| new_z = zn - complex_function(zn) / (3 * zn ** 2) | |
| if abs(zn - new_z) < eps: # stop when close enough to any root | |
| break | |
| zn = new_z | |
| min_s = min(min_s, i) | |
| max_s = max(max_s, i) | |
| points.append(((x, y), i)) | |
| for p, i in points: | |
| im.putpixel(p, rgb(min_s, max_s, i)) | |
| im.save(name) | |
| # newton_fractal(1000, 30, ((-2, -2), (2, 2)), newt_1, name="newton_1.png") | |
| # newton_fractal(1000, 30, ((-2, -2), (2, 2)), newt_2, name="newton_2.png") | 
  
    Sign up for free
    to join this conversation on GitHub.
    Already have an account?
    Sign in to comment