Created
June 2, 2015 18:36
-
-
Save adusak/e4afdaf5fa286d85c430 to your computer and use it in GitHub Desktop.
Regression
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| def generate_points(a, b, number_points=500): | |
| x_points = np.random.normal(0, np.random.randint(0, number_points / 10), number_points) | |
| y_points = (a * x_points + b) + np.random.normal(0, number_points / 2, number_points) | |
| return np.array(x_points, dtype=float), np.array(y_points, dtype=float) | |
| def linear_regression_analytical(x, y, plot=False): | |
| n = len(x) | |
| numer = n * sum(x * y) - sum(x) * sum(y) | |
| denom = n * sum(x ** 2) - sum(x) ** 2 | |
| a = numer / denom | |
| b = sum(y) / n - a * (sum(x) / n) | |
| print("y = " + str(a) + "x + " + str(b)) | |
| if plot: | |
| plt.scatter(x, y) | |
| plt.plot(x, a * x + b, color="green") | |
| plt.savefig("analytical.png") | |
| plt.show() | |
| return a, b | |
| def gradient_descent(start_a, start_b, x, y, iterations, step, plot=False): | |
| number_points = len(x) | |
| result_a, result_b = start_a, start_b | |
| for i in range(iterations): | |
| if i % 500 == 0 and plot: | |
| plt.plot(x, result_a * x + result_a, color="red") | |
| a_gradient = sum(-(2 / number_points) * x * (y - (result_a * x + result_b))) | |
| b_gradient = sum(-(2 / number_points) * (y - (result_a * x + result_b))) | |
| result_a = result_a - (step * a_gradient) | |
| result_b = result_b - (step * b_gradient) | |
| print("Gradient descent => y = " + str(result_a) + "x + " + str(result_b)) | |
| if plot: | |
| plt.scatter(x, y) | |
| plt.plot(x, result_a * x + result_a, color="green") | |
| plt.savefig("gradient_descent.png") | |
| plt.show() | |
| def test_linreg(): | |
| a = 2.5 | |
| b = 1.4 | |
| points = generate_points(a, b, 100) | |
| print("Original a:", a, "b:", b) | |
| plt.plot(points[0], a * points[0] + b, color="red") | |
| print("Calculated a,b:", linear_regression_analytical(points[0], points[1], plot=True)) | |
| def load_file(name): | |
| file = open(name) | |
| read_file = file.read() | |
| lines = read_file.split("\n") | |
| x = [] | |
| y = [] | |
| for line in lines: | |
| xy = line.split(" ") | |
| x.append(float(xy[0])) | |
| y.append(float(xy[1])) | |
| return np.array(x, dtype=float), np.array(y, dtype=float) | |
| # x, y = load_file("exfiles/oldfailthful.txt") | |
| # #linear_regression_analytical(x, y, True) | |
| # | |
| # a = 2.5 | |
| # b = 1.4 | |
| # o, p = generate_points(a, b, 100) | |
| # | |
| # gradient_descent(5, 0.5, o, p, 6000, 0.0001, plot=True) | |
| # | |
| # #test_linreg() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment