Created
April 7, 2010 10:25
-
-
Save aeter/358726 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
grid = [ | |
"08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08",\ | |
"49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00",\ | |
"81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65",\ | |
"52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91",\ | |
"22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80",\ | |
"24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50",\ | |
"32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70",\ | |
"67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21",\ | |
"24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72",\ | |
"21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95",\ | |
"78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92",\ | |
"16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57",\ | |
"86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58",\ | |
"19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40",\ | |
"04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66",\ | |
"88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69",\ | |
"04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36",\ | |
"20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16",\ | |
"20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54",\ | |
"01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48" | |
] | |
# test grid = ["1 2 3 4", "1 2 3 4", "1 2 3 4", "1 2 3 4"] | |
""" | |
Put the grid into a matrix | |
""" | |
matrix = [] | |
for line in grid: | |
items = line.split(" ") | |
matrix.append(map(int, items)) | |
# matrix [y][x] | |
""" | |
Multiplies numbers left-right | |
""" | |
def mult_right(x, y, num_counter=0, result=1): | |
if x < 0 or y < 0 or x > (len(matrix) - 1) or y > (len(matrix) - 1): # out of matrix | |
return 0 | |
if num_counter == 3: # bottom of recursion | |
return result * matrix[x][y] | |
else: | |
result = matrix[x][y] * mult_right(x, y+1, num_counter + 1, result) | |
return result | |
""" | |
Multiplies numbers top-down | |
""" | |
def mult_down(x, y, num_counter=0, result=1): | |
if x < 0 or y < 0 or x > (len(matrix) - 1) or y > (len(matrix) - 1): # out of matrix | |
return 0 | |
if num_counter == 3: # bottom of recursion | |
return result * matrix[x][y] | |
else: | |
result = matrix[x][y] * mult_down(x+1, y, num_counter + 1, result) | |
return result | |
""" | |
Multiplies numbers diagonally left-top - right-down | |
""" | |
def mult_diag_leftop_rightdown(x, y, num_counter=0, result=1): | |
if x < 0 or y < 0 or x > (len(matrix) - 1) or y > (len(matrix) - 1): # out of matrix | |
return 0 | |
if num_counter == 3: # bottom of recursion | |
return result * matrix[x][y] | |
else: | |
result = matrix[x][y] * mult_diag_leftop_rightdown(x+1, y+1, num_counter + 1, result) | |
return result | |
""" | |
Multiplies numbers diagonally right-top - left-down | |
""" | |
def mult_diag_rightop_leftdown(x, y, num_counter=0, result=1): | |
if x < 0 or y < 0 or x > (len(matrix) - 1) or y > (len(matrix) - 1): # out of matrix | |
return 0 | |
if num_counter == 3: # bottom of recursion | |
return result * matrix[x][y] | |
else: | |
result = matrix[x][y] * mult_diag_rightop_leftdown(x-1, y+1, num_counter + 1, result) | |
return result | |
""" | |
Now find the max num | |
""" | |
max_num = 0 | |
for x in range (0, len(matrix)): | |
for y in range (0, len(matrix)): | |
mult_result = max([mult_down(x,y), mult_right(x,y), mult_diag_leftop_rightdown(x,y), mult_diag_rightop_leftdown(x,y)]) | |
if mult_result > max_num: | |
max_num = mult_result | |
print max_num |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment