The implementation will adhere strictly to the four fundamental Prime Framework axioms:
- Implement a smooth manifold
M
with metric tensorg
- Represent as a WebGL-accelerated geometric structure
- Support embedding of mathematical objects and physical systems
- Implement coordinate charts and transitions between them
- For each point x ∈ M, implement a Clifford algebra Cx = Cl(TxM, gx)
- Support all Clifford algebra operations (geometric product, outer product, etc.)
- Implement intrinsic embedding of numbers in fiber algebras
- Support multi-grade representations and transformations
- Implement Lie group G acting by isometries on M
- Support lifting of actions to fiber algebras via isomorphisms Φ(h)
- Implement generators and exponential map for continuous transformations
- Support symmetry operations that manifest as fundamental forces
- Implement G-invariant positive-definite inner product 〈·,·〉c on each fiber
- Support coherence norm calculations using WebGL acceleration
- Implement coherence optimization algorithms for minimal-norm representations
- Support measurement operations through coherence projection
PrimeFramework/
├── Core/
│ ├── ReferenceManifold.js # Implements manifold and metric
│ ├── CliffordAlgebra.js # Implements fiber algebras
│ ├── SymmetryGroup.js # Implements Lie group actions
│ ├── CoherenceProduct.js # Implements inner product and norm
│ └── UniversalEmbedding.js # Handles object embedding
├── Accelerators/
│ ├── WebGLCompute.js # WebGL computation accelerator
│ ├── WebGPUCompute.js # WebGPU computation (when available)
│ ├── ShaderLibrary.js # GLSL shaders for computations
│ └── ParallelProcessor.js # Manages parallel processing
├── Mathematics/
│ ├── NumberTheory.js # Prime numbers and factorization
│ ├── IntrinsicPrimes.js # Intrinsic prime implementation
│ ├── PrimeOperator.js # The Prime Operator implementation
│ └── AnalyticFunctions.js # Zeta function and analytic tools
├── QuantumSimulation/
│ ├── QuantumState.js # Quantum state representation
│ ├── QuantumGates.js # Standard and custom quantum gates
│ ├── QuantumAlgorithms.js # Algorithm implementations
│ └── QuantumMeasurement.js # Measurement via coherence
└── Applications/
├── PvsNP.js # P vs NP demonstration
├── PrimeFormula.js # Prime number formula demonstration
├── QuantumSupremacy.js # Quantum advantage demonstration
└── CosmologicalConstant.js # Cosmological constant derivation
// WebGL2 Compute Acceleration for Clifford Algebra Operations
class WebGLAccelerator {
constructor() {
this.gl = this.initWebGL();
this.programs = {
cliffordProduct: this.createProgram(CLIFFORD_PRODUCT_SHADER),
coherenceNorm: this.createProgram(COHERENCE_NORM_SHADER),
stateEvolution: this.createProgram(STATE_EVOLUTION_SHADER),
factorization: this.createProgram(FACTORIZATION_SHADER)
};
this.frameBuffers = this.initFrameBuffers();
this.textureUnits = this.initTextureUnits();
}
// Methods for GPU-accelerated Prime Framework operations
computeCliffordProduct(a, b) { /* ... */ }
evaluateCoherenceNorm(state) { /* ... */ }
evolveQuantumState(state, operator) { /* ... */ }
parallelFactorization(number) { /* ... */ }
// Internal WebGL management methods
initWebGL() { /* ... */ }
createProgram(shaderSource) { /* ... */ }
initFrameBuffers() { /* ... */ }
initTextureUnits() { /* ... */ }
}
class UniversalNumberEmbedding {
constructor(manifold, fiberAlgebra) {
this.manifold = manifold;
this.fiberAlgebra = fiberAlgebra;
this.coherenceProduct = new CoherenceProduct(fiberAlgebra);
}
// Embeds a natural number into the fiber algebra
embedNumber(N) {
// Create multivector with components for all bases b ≥ 2
const multivector = new Multivector();
// For each base, add the corresponding grade
for (let base = 2; base <= MAX_BASE; base++) {
const digits = this.convertToBase(N, base);
multivector.addGradeComponent(base, digits);
}
// Optimize for coherence (minimal norm representation)
return this.coherenceProduct.findMinimalNorm(multivector);
}
// Find the prime factorization using intrinsic structure
factorizeNumber(N) {
const embedded = this.embedNumber(N);
return this.extractIntrinsicPrimes(embedded);
}
// Check if a number is intrinsically prime
isIntrinsicPrime(N) {
const embedded = this.embedNumber(N);
return this.coherenceProduct.testPrimality(embedded);
}
}
class PrimeOperator {
constructor(hilbertSpace) {
this.hilbertSpace = hilbertSpace;
this.accelerator = new WebGLAccelerator();
}
// Implements H(δN) = Σd|N δd (sum over divisors)
applyToState(stateVector) {
return this.accelerator.applyPrimeOperator(stateVector);
}
// Calculates the spectral determinant D(u) = det(I - uH)
calculateDeterminant(u) {
return this.accelerator.computeDeterminant(this, u);
}
// Derives the zeta function ζP(s) = 1/D(s) = Πp(1/(1-p^(-s)))
deriveZetaFunction(s) {
const determinant = this.calculateDeterminant(Math.pow(s, -1));
return 1 / determinant;
}
// Calculate the prime counting function π(X)
calculatePrimeCountingFunction(X) {
// Implements the Prime Number Theorem via contour integration
return this.accelerator.integratePrimeCountingFunction(X);
}
}
class PvsNPDemo {
constructor(primeFramework) {
this.primeFramework = primeFramework;
this.accelerator = new WebGLAccelerator();
}
// Demonstrates why NP problems cannot be solved in polynomial time
demonstratePvsNPSeparation() {
// Creates a SAT instance in the Prime Framework
const satInstance = this.createSATInstance();
// Shows the coherence norm gradient and why it cannot be minimized polynomially
return this.simulateCoherenceGradient(satInstance);
}
// Creates a visualization of local vs. global operations
visualizeCoherenceOptimization(problem) {
return this.accelerator.visualizeCoherenceSpace(problem);
}
// Simulates exhaustive search vs. verification
demonstrateSearchVerificationGap(instance) {
const verificationTime = this.measureVerificationTime(instance);
const searchSpaceSize = this.calculateSearchSpace(instance);
return { verificationTime, searchSpaceSize };
}
}
// Primary interaction points with the Prime Framework
const PrimeFramework = {
// Initialize the framework
initialize: (config) => { /* ... */ },
// Create a reference manifold
createManifold: (dimensions, metric) => { /* ... */ },
// Create a fiber algebra at a point
createFiberAlgebra: (point, metric) => { /* ... */ },
// Create a symmetry group
createSymmetryGroup: (generators) => { /* ... */ },
// Embed an object in the framework
embedObject: (object, manifoldPoint) => { /* ... */ },
// Calculate coherence norm
calculateCoherence: (embeddedObject) => { /* ... */ },
// Find minimal coherence representation
optimizeCoherence: (embeddedObject) => { /* ... */ }
};
// Quantum simulation using Prime Framework principles
const QuantumSimulator = {
// Create a quantum state
createState: (qubits, initialState) => { /* ... */ },
// Apply quantum gates
applyGate: (state, gate, targets, controls) => { /* ... */ },
// Run a quantum circuit
runCircuit: (state, circuit) => { /* ... */ },
// Perform measurement (via coherence optimization)
measure: (state, qubits) => { /* ... */ },
// Run predefined quantum algorithms
runAlgorithm: (algorithm, parameters) => { /* ... */ }
};
-
Prime Formula Demonstration
- Show how the Prime Framework derives the explicit formula for the nth prime
- Visualize the relationship between the Prime Operator and prime distribution
- Compare with empirical prime data for validation
-
P vs NP Separation
- Demonstrate coherence norm gradient for SAT instances
- Visualize the exponential search space and polynomial verification
- Show why quantum computers still can't solve NP-complete problems in polynomial time
-
Quantum Algorithms Through Prime Framework
- Show how quantum algorithms emerge naturally from coherence optimization
- Demonstrate the Bell state, teleportation, and Grover's search algorithm
- Visualize the phase and amplitude relationships unique to the Prime Framework
-
Cosmological Constant Derivation
- Demonstrate how the residual coherence term emerges as the cosmological constant
- Visualize the relationship between quantum field coherence and cosmological expansion
- Show mathematical derivation from first principles
// Visualization components
const PrimeFrameworkUI = {
// Render the reference manifold
renderManifold: (canvasElement, manifold, options) => { /* ... */ },
// Render fiber algebra elements
renderFiberAlgebra: (canvasElement, fiberAlgebra, options) => { /* ... */ },
// Visualize coherence
visualizeCoherence: (canvasElement, embeddedObject, options) => { /* ... */ },
// Render quantum states
renderQuantumState: (canvasElement, quantumState, options) => { /* ... */ },
// Animate quantum algorithms
animateQuantumAlgorithm: (canvasElement, algorithm, options) => { /* ... */ },
// Visualize P vs NP separation
visualizePvsNP: (canvasElement, satInstance, options) => { /* ... */ },
// Generate interactive controls
createControls: (containerElement, controlOptions) => { /* ... */ }
};
-
Browser Compatibility
- Modern browsers with WebGL2 support
- WebGPU support (optional, for future enhancement)
- ES6+ JavaScript support
-
Hardware Requirements
- GPU with compute shader capabilities
- Minimum 4GB GPU memory for complex simulations
- Multi-core CPU for parallel JavaScript operations
-
Libraries and Dependencies
- No external dependencies for core Prime Framework implementation
- Optional visualization libraries (Three.js for advanced 3D visualization)
- Optional UI frameworks (React/Vue) for component management
-
Phase 1: Core Implementation
- Implement the four axioms and foundational classes
- Develop WebGL acceleration layer
- Implement universal number embedding
-
Phase 2: Mathematical Features
- Implement Prime Operator and spectral analysis
- Develop intrinsic prime factorization
- Implement zeta function and analytical tools
-
Phase 3: Quantum Simulation
- Implement quantum state representation
- Develop gate operations via Clifford algebra
- Implement measurement via coherence optimization
-
Phase 4: Demonstrations
- Implement P vs NP demonstration
- Develop prime formula visualization
- Create interactive quantum algorithm demonstrations
-
Phase 5: Optimization and Documentation
- Optimize WebGL/GPU acceleration
- Comprehensive API documentation
- Performance benchmarking
-
Computationally Intensive Operations
- Clifford algebra products (accelerated via WebGL)
- Coherence norm minimization (parallel optimization algorithms)
- Large-scale matrix operations (shader-based implementation)
- Prime counting and factorization (custom GPU algorithms)
-
Memory Management
- Sparse representation of multivectors
- On-demand calculation of algebraic components
- Texture-based storage for large state vectors
- Progressive refinement for visualization
This specification provides a comprehensive blueprint for implementing a pure Prime Framework quantum emulator that leverages browser graphics capabilities for acceleration, while staying true to the mathematical foundations described in the documents.