Skip to content

Instantly share code, notes, and snippets.

@afflom
Created March 4, 2025 16:30
Show Gist options
  • Save afflom/4100bcc3ff795b7bc006587bfcd51e85 to your computer and use it in GitHub Desktop.
Save afflom/4100bcc3ff795b7bc006587bfcd51e85 to your computer and use it in GitHub Desktop.
Prime Framework Quantum Emulator - JavaScript with WebGL Acceleration

Prime Framework Implementation Specification

Pure JavaScript Implementation of the Prime Framework Quantum Emulator

1. Core Architecture

The implementation will adhere strictly to the four fundamental Prime Framework axioms:

1.1 Reference Manifold

  • Implement a smooth manifold M with metric tensor g
  • Represent as a WebGL-accelerated geometric structure
  • Support embedding of mathematical objects and physical systems
  • Implement coordinate charts and transitions between them

1.2 Algebraic Fibers

  • For each point x ∈ M, implement a Clifford algebra Cx = Cl(TxM, gx)
  • Support all Clifford algebra operations (geometric product, outer product, etc.)
  • Implement intrinsic embedding of numbers in fiber algebras
  • Support multi-grade representations and transformations

1.3 Symmetry Group Action

  • Implement Lie group G acting by isometries on M
  • Support lifting of actions to fiber algebras via isomorphisms Φ(h)
  • Implement generators and exponential map for continuous transformations
  • Support symmetry operations that manifest as fundamental forces

1.4 Coherence Inner Product

  • Implement G-invariant positive-definite inner product 〈·,·〉c on each fiber
  • Support coherence norm calculations using WebGL acceleration
  • Implement coherence optimization algorithms for minimal-norm representations
  • Support measurement operations through coherence projection

2. Technical Architecture

2.1 Core Modules

PrimeFramework/
├── Core/
│   ├── ReferenceManifold.js        # Implements manifold and metric
│   ├── CliffordAlgebra.js          # Implements fiber algebras
│   ├── SymmetryGroup.js            # Implements Lie group actions
│   ├── CoherenceProduct.js         # Implements inner product and norm
│   └── UniversalEmbedding.js       # Handles object embedding
├── Accelerators/
│   ├── WebGLCompute.js             # WebGL computation accelerator
│   ├── WebGPUCompute.js            # WebGPU computation (when available)
│   ├── ShaderLibrary.js            # GLSL shaders for computations
│   └── ParallelProcessor.js        # Manages parallel processing
├── Mathematics/
│   ├── NumberTheory.js             # Prime numbers and factorization
│   ├── IntrinsicPrimes.js          # Intrinsic prime implementation
│   ├── PrimeOperator.js            # The Prime Operator implementation
│   └── AnalyticFunctions.js        # Zeta function and analytic tools
├── QuantumSimulation/
│   ├── QuantumState.js             # Quantum state representation
│   ├── QuantumGates.js             # Standard and custom quantum gates
│   ├── QuantumAlgorithms.js        # Algorithm implementations
│   └── QuantumMeasurement.js       # Measurement via coherence
└── Applications/
    ├── PvsNP.js                    # P vs NP demonstration
    ├── PrimeFormula.js             # Prime number formula demonstration
    ├── QuantumSupremacy.js         # Quantum advantage demonstration
    └── CosmologicalConstant.js     # Cosmological constant derivation

2.2 Graphics Acceleration

// WebGL2 Compute Acceleration for Clifford Algebra Operations
class WebGLAccelerator {
  constructor() {
    this.gl = this.initWebGL();
    this.programs = {
      cliffordProduct: this.createProgram(CLIFFORD_PRODUCT_SHADER),
      coherenceNorm: this.createProgram(COHERENCE_NORM_SHADER),
      stateEvolution: this.createProgram(STATE_EVOLUTION_SHADER),
      factorization: this.createProgram(FACTORIZATION_SHADER)
    };
    this.frameBuffers = this.initFrameBuffers();
    this.textureUnits = this.initTextureUnits();
  }
  
  // Methods for GPU-accelerated Prime Framework operations
  computeCliffordProduct(a, b) { /* ... */ }
  evaluateCoherenceNorm(state) { /* ... */ }
  evolveQuantumState(state, operator) { /* ... */ }
  parallelFactorization(number) { /* ... */ }
  
  // Internal WebGL management methods
  initWebGL() { /* ... */ }
  createProgram(shaderSource) { /* ... */ }
  initFrameBuffers() { /* ... */ }
  initTextureUnits() { /* ... */ }
}

3. Key Implementations

3.1 Universal Number Embedding

class UniversalNumberEmbedding {
  constructor(manifold, fiberAlgebra) {
    this.manifold = manifold;
    this.fiberAlgebra = fiberAlgebra;
    this.coherenceProduct = new CoherenceProduct(fiberAlgebra);
  }
  
  // Embeds a natural number into the fiber algebra
  embedNumber(N) {
    // Create multivector with components for all bases b ≥ 2
    const multivector = new Multivector();
    
    // For each base, add the corresponding grade
    for (let base = 2; base <= MAX_BASE; base++) {
      const digits = this.convertToBase(N, base);
      multivector.addGradeComponent(base, digits);
    }
    
    // Optimize for coherence (minimal norm representation)
    return this.coherenceProduct.findMinimalNorm(multivector);
  }
  
  // Find the prime factorization using intrinsic structure
  factorizeNumber(N) {
    const embedded = this.embedNumber(N);
    return this.extractIntrinsicPrimes(embedded);
  }
  
  // Check if a number is intrinsically prime
  isIntrinsicPrime(N) {
    const embedded = this.embedNumber(N);
    return this.coherenceProduct.testPrimality(embedded);
  }
}

3.2 Prime Operator Implementation

class PrimeOperator {
  constructor(hilbertSpace) {
    this.hilbertSpace = hilbertSpace;
    this.accelerator = new WebGLAccelerator();
  }
  
  // Implements H(δN) = Σd|N δd (sum over divisors)
  applyToState(stateVector) {
    return this.accelerator.applyPrimeOperator(stateVector);
  }
  
  // Calculates the spectral determinant D(u) = det(I - uH)
  calculateDeterminant(u) {
    return this.accelerator.computeDeterminant(this, u);
  }
  
  // Derives the zeta function ζP(s) = 1/D(s) = Πp(1/(1-p^(-s)))
  deriveZetaFunction(s) {
    const determinant = this.calculateDeterminant(Math.pow(s, -1));
    return 1 / determinant;
  }
  
  // Calculate the prime counting function π(X)
  calculatePrimeCountingFunction(X) {
    // Implements the Prime Number Theorem via contour integration
    return this.accelerator.integratePrimeCountingFunction(X);
  }
}

3.3 P vs NP Demonstration

class PvsNPDemo {
  constructor(primeFramework) {
    this.primeFramework = primeFramework;
    this.accelerator = new WebGLAccelerator();
  }
  
  // Demonstrates why NP problems cannot be solved in polynomial time
  demonstratePvsNPSeparation() {
    // Creates a SAT instance in the Prime Framework
    const satInstance = this.createSATInstance();
    
    // Shows the coherence norm gradient and why it cannot be minimized polynomially
    return this.simulateCoherenceGradient(satInstance);
  }
  
  // Creates a visualization of local vs. global operations
  visualizeCoherenceOptimization(problem) {
    return this.accelerator.visualizeCoherenceSpace(problem);
  }
  
  // Simulates exhaustive search vs. verification
  demonstrateSearchVerificationGap(instance) {
    const verificationTime = this.measureVerificationTime(instance);
    const searchSpaceSize = this.calculateSearchSpace(instance);
    return { verificationTime, searchSpaceSize };
  }
}

4. API Design

4.1 Core API

// Primary interaction points with the Prime Framework
const PrimeFramework = {
  // Initialize the framework
  initialize: (config) => { /* ... */ },
  
  // Create a reference manifold
  createManifold: (dimensions, metric) => { /* ... */ },
  
  // Create a fiber algebra at a point
  createFiberAlgebra: (point, metric) => { /* ... */ },
  
  // Create a symmetry group
  createSymmetryGroup: (generators) => { /* ... */ },
  
  // Embed an object in the framework
  embedObject: (object, manifoldPoint) => { /* ... */ },
  
  // Calculate coherence norm
  calculateCoherence: (embeddedObject) => { /* ... */ },
  
  // Find minimal coherence representation
  optimizeCoherence: (embeddedObject) => { /* ... */ }
};

4.2 Quantum Simulation API

// Quantum simulation using Prime Framework principles
const QuantumSimulator = {
  // Create a quantum state
  createState: (qubits, initialState) => { /* ... */ },
  
  // Apply quantum gates
  applyGate: (state, gate, targets, controls) => { /* ... */ },
  
  // Run a quantum circuit
  runCircuit: (state, circuit) => { /* ... */ },
  
  // Perform measurement (via coherence optimization)
  measure: (state, qubits) => { /* ... */ },
  
  // Run predefined quantum algorithms
  runAlgorithm: (algorithm, parameters) => { /* ... */ }
};

5. Demo Implementation

5.1 Key Demonstrations

  1. Prime Formula Demonstration

    • Show how the Prime Framework derives the explicit formula for the nth prime
    • Visualize the relationship between the Prime Operator and prime distribution
    • Compare with empirical prime data for validation
  2. P vs NP Separation

    • Demonstrate coherence norm gradient for SAT instances
    • Visualize the exponential search space and polynomial verification
    • Show why quantum computers still can't solve NP-complete problems in polynomial time
  3. Quantum Algorithms Through Prime Framework

    • Show how quantum algorithms emerge naturally from coherence optimization
    • Demonstrate the Bell state, teleportation, and Grover's search algorithm
    • Visualize the phase and amplitude relationships unique to the Prime Framework
  4. Cosmological Constant Derivation

    • Demonstrate how the residual coherence term emerges as the cosmological constant
    • Visualize the relationship between quantum field coherence and cosmological expansion
    • Show mathematical derivation from first principles

5.2 User Interface Components

// Visualization components
const PrimeFrameworkUI = {
  // Render the reference manifold
  renderManifold: (canvasElement, manifold, options) => { /* ... */ },
  
  // Render fiber algebra elements
  renderFiberAlgebra: (canvasElement, fiberAlgebra, options) => { /* ... */ },
  
  // Visualize coherence
  visualizeCoherence: (canvasElement, embeddedObject, options) => { /* ... */ },
  
  // Render quantum states
  renderQuantumState: (canvasElement, quantumState, options) => { /* ... */ },
  
  // Animate quantum algorithms
  animateQuantumAlgorithm: (canvasElement, algorithm, options) => { /* ... */ },
  
  // Visualize P vs NP separation
  visualizePvsNP: (canvasElement, satInstance, options) => { /* ... */ },
  
  // Generate interactive controls
  createControls: (containerElement, controlOptions) => { /* ... */ }
};

6. Technology Requirements

  1. Browser Compatibility

    • Modern browsers with WebGL2 support
    • WebGPU support (optional, for future enhancement)
    • ES6+ JavaScript support
  2. Hardware Requirements

    • GPU with compute shader capabilities
    • Minimum 4GB GPU memory for complex simulations
    • Multi-core CPU for parallel JavaScript operations
  3. Libraries and Dependencies

    • No external dependencies for core Prime Framework implementation
    • Optional visualization libraries (Three.js for advanced 3D visualization)
    • Optional UI frameworks (React/Vue) for component management

7. Development Roadmap

  1. Phase 1: Core Implementation

    • Implement the four axioms and foundational classes
    • Develop WebGL acceleration layer
    • Implement universal number embedding
  2. Phase 2: Mathematical Features

    • Implement Prime Operator and spectral analysis
    • Develop intrinsic prime factorization
    • Implement zeta function and analytical tools
  3. Phase 3: Quantum Simulation

    • Implement quantum state representation
    • Develop gate operations via Clifford algebra
    • Implement measurement via coherence optimization
  4. Phase 4: Demonstrations

    • Implement P vs NP demonstration
    • Develop prime formula visualization
    • Create interactive quantum algorithm demonstrations
  5. Phase 5: Optimization and Documentation

    • Optimize WebGL/GPU acceleration
    • Comprehensive API documentation
    • Performance benchmarking

8. Performance Considerations

  1. Computationally Intensive Operations

    • Clifford algebra products (accelerated via WebGL)
    • Coherence norm minimization (parallel optimization algorithms)
    • Large-scale matrix operations (shader-based implementation)
    • Prime counting and factorization (custom GPU algorithms)
  2. Memory Management

    • Sparse representation of multivectors
    • On-demand calculation of algebraic components
    • Texture-based storage for large state vectors
    • Progressive refinement for visualization

This specification provides a comprehensive blueprint for implementing a pure Prime Framework quantum emulator that leverages browser graphics capabilities for acceleration, while staying true to the mathematical foundations described in the documents.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment