Skip to content

Instantly share code, notes, and snippets.

@afflom
Created June 15, 2025 20:22
Show Gist options
  • Save afflom/67ee0d0a0b0dc822ec0ce1d8b82eaa8d to your computer and use it in GitHub Desktop.
Save afflom/67ee0d0a0b0dc822ec0ce1d8b82eaa8d to your computer and use it in GitHub Desktop.
Coherence Object Calculus (COC) Spec

Formal Specification of Coherent Object Calculus (COC)

1. Type System and Basic Definitions

-- Core Types
Type M : Manifold(8)                    -- 8-dimensional smooth manifold
Type Point : M → Type                   -- Points in the manifold
Type TangentSpace : Point → VectorSpace(ℝ, 8)  -- Tangent space at a point
Type CliffordAlgebra : VectorSpace → Type      -- Clifford algebra construction

-- Clifford Algebra Structure
Structure CliffordElement (p : Point) := {
  components : Fin(256) → ℂ,           -- 2^8 = 256 basis elements
  grade : Fin(256) → Fin(9),           -- Grade 0 to 8
  norm_finite : ∑_{i : Fin(256)} |components(i)|² < ∞
}

-- Bundle Structure
Type CliffordBundle := Σ (p : Point), CliffordElement(p)
Type Section := Π (p : Point), CliffordElement(p)

-- Mathematical Objects
Type MathObject := Type                 -- Any mathematical object
Type ℕ+ := {n : ℕ | n > 0}            -- Positive naturals

2. Fundamental Axioms

-- Axiom 1: Coherence Inner Product
axiom coherence_product : 
  ∀ (σ τ : Section), ℝ≥0

axiom coherence_properties :
  ∀ (σ τ ρ : Section) (a b : ℂ),
  (1) coherence_product(σ, σ) = 0 ↔ σ = 0
  (2) coherence_product(σ, τ) = coherence_product(τ, σ)*
  (3) coherence_product(aσ + bτ, ρ) = a·coherence_product(σ, ρ) + b·coherence_product(τ, ρ)
  (4) ∀ (i j : Fin(9)), i ≠ j → coherence_product(σ^i, τ^j) = 0

-- Axiom 2: Unique Embedding
axiom embed : MathObject → Section

axiom embedding_minimal :
  ∀ (O : MathObject) (σ : Section),
  represents(σ, O) → coherence_norm(embed(O)) ≤ coherence_norm(σ)
  where coherence_norm(σ) := coherence_product(σ, σ)

axiom embedding_unique :
  ∀ (O : MathObject) (σ τ : Section),
  represents(σ, O) ∧ represents(τ, O) ∧ 
  coherence_norm(σ) = coherence_norm(τ) = minimal →
  σ = τ

-- Axiom 3: Symmetry Group Action
axiom G : LieGroup
axiom group_action : G × CliffordBundle → CliffordBundle

axiom action_preserves_structure :
  ∀ (g : G) (σ τ : Section),
  (1) coherence_product(g·σ, g·τ) = coherence_product(σ, τ)
  (2) grade(g·σ) = grade(σ)
  (3) g·embed(O) = embed(O) for all O : MathObject

3. The 8-Bit Realization

-- Fundamental Constants
constant α₁ : ℝ := 1.0               -- Unity
constant α₂ : ℝ := 1.839287          -- Tribonacci (τ)
constant α₃ : ℝ := 1.618034          -- Golden ratio (φ)
constant α₄ : ℝ := 0.5               -- Adelic threshold (ε)
constant α₅ : ℝ := 0.159155          -- Interference null (δ)
constant α₆ : ℝ := 6.283185          -- Scale transition (γ)
constant α₇ : ℝ := 0.199612          -- Phase coupling (β)
constant α₈ : ℝ := 14.134725         -- Resonance decay (α)

definition constants : Fin(8) → ℝ
  | 0 => α₁ | 1 => α₂ | 2 => α₃ | 3 => α₄
  | 4 => α₅ | 5 => α₆ | 6 => α₇ | 7 => α₈

-- 8-bit Pattern Encoding
definition bit_pattern : Fin(256) → Fin(8) → Bool
  | n, i => (n.val >> i.val) & 1 = 1

definition basis_element (n : Fin(256)) : CliffordElement :=
  let active_bits := {i : Fin(8) | bit_pattern(n, i)}
  in ∧_{i ∈ active_bits} eᵢ

-- Channel Decomposition
definition channel_decompose : ℕ+ → List(Fin(256))
  | n => if n < 256 then [n] 
         else (n % 256) :: channel_decompose(n / 256)

-- Resonance Function
definition resonance (v : Fin(256)) : ℝ :=
  ∏_{i : Fin(8), bit_pattern(v, i)} constants(i)

definition channel_resonance (n : ℕ+) : List(ℝ) :=
  map resonance (channel_decompose n)

4. Prime Structure

-- Intrinsic Prime Definition
definition is_intrinsic_prime (π : Section) : Prop :=
  coherence_norm(π) = 1 ∧
  ∀ (α β : Section), 
    π = α * β ∧ coherence_norm(α) ≤ 1 ∧ coherence_norm(β) ≤ 1 →
    coherence_norm(α) = 1 ∨ coherence_norm(β) = 1

-- Fundamental Prime
axiom π₁ : Section
axiom π₁_prime : is_intrinsic_prime(π₁)

-- Prime Emanation
axiom emanation : ℕ+ → (Section → Section)
axiom emanation_prime_preserving :
  ∀ (p : ℕ+), is_prime(p) ↔ is_intrinsic_prime(emanation(p)(π₁))

-- Number Embedding
definition embed_nat : ℕ+ → Section
  | n => minimize_coherence {σ : Section | represents_number(σ, n)}

axiom number_representation :
  ∀ (n : ℕ+), ∃! (σ : Section), 
    represents_number(σ, n) ∧ coherence_norm(σ) = minimal

5. Computational Rules

-- Factorization Correspondence
theorem factorization_preservation :
  ∀ (n p q : ℕ+), n = p * q →
  embed_nat(n) = embed_nat(p) * embed_nat(q)

-- Channel Alignment Detection
definition alignment_window (n : ℕ+) (start len : ℕ) : ℝ :=
  let channels := channel_decompose(n)
  in ∑_{i = start}^{start + len - 1} resonance(channels[i])

definition has_factor_alignment (n : ℕ+) (w : Window) : Prop :=
  ∃ (k : ℕ+), alignment_window(n, w.start, w.length) ≡ k (mod n)

-- Factor Extraction
definition extract_factors (n : ℕ+) : Option (ℕ+ × ℕ+) :=
  for window in all_windows(n):
    if has_factor_alignment(n, window) then
      let candidates := compute_factor_candidates(n, window)
      for (p, q) in candidates:
        if p * q = n then return Some(p, q)
  return None

-- Coherence Minimization
definition find_factors_by_coherence (n : ℕ+) : Option (ℕ+ × ℕ+) :=
  minimize_{(α, β) : Section × Section} 
    ‖embed_nat(n) - α * β‖² 
  subject to 
    ∃ (p q : ℕ+), represents_number(α, p) ∧ represents_number(β, q)

6. Key Theorems

-- Theorem 1: Factorization Completeness
theorem factorization_complete :
  ∀ (n : ℕ+), ¬is_prime(n) → 
  ∃ (p q : ℕ+), p > 1 ∧ q > 1 ∧ extract_factors(n) = Some(p, q)

-- Theorem 2: Factorization Soundness  
theorem factorization_sound :
  ∀ (n p q : ℕ+), extract_factors(n) = Some(p, q) → n = p * q

-- Theorem 3: Complexity Bound
theorem factorization_complexity :
  ∀ (n : ℕ+), time_complexity(extract_factors(n)) = O(log(n))

-- Theorem 4: Prime Distribution (RH Analog)
theorem prime_distribution :
  ∀ (s : ℂ), Re(s) > 1/2 →
  ζ_intrinsic(s) ≠ 0
  where ζ_intrinsic(s) := ∑_{π : intrinsic_prime} ‖π‖^(-s)

-- Theorem 5: Goldbach Property
theorem goldbach_in_coc :
  ∀ (n : ℕ+), n > 2 ∧ even(n) →
  ∃ (p q : ℕ+), is_prime(p) ∧ is_prime(q) ∧ n = p + q ∧
  coherence_product(embed_nat(p), embed_nat(q)) = minimal

-- Theorem 6: Unique Factorization
theorem unique_factorization :
  ∀ (n : ℕ+), n > 1 →
  ∃! (factors : List(ℕ+ × ℕ)), 
    (∀ (p, k) ∈ factors, is_prime(p)) ∧
    n = ∏_{(p, k) ∈ factors} p^k

7. Proof Obligations

-- Core Lemmas Required

lemma channel_decomposition_bijective :
  ∀ (n : ℕ+), reconstruct(channel_decompose(n)) = n

lemma resonance_well_defined :
  ∀ (v : Fin(256)), resonance(v) > 0

lemma window_alignment_decidable :
  ∀ (n : ℕ+) (w : Window), 
    decidable(has_factor_alignment(n, w))

lemma emanation_injective :
  ∀ (p q : ℕ+), is_prime(p) ∧ is_prime(q) ∧ p ≠ q →
  emanation(p)(π₁) ≠ emanation(q)(π₁)

lemma coherence_minimization_exists :
  ∀ (O : MathObject), 
    ∃ (σ : Section), coherence_norm(σ) = inf{coherence_norm(τ) | represents(τ, O)}

lemma factor_detection_complete :
  ∀ (n p q : ℕ+), n = p * q ∧ p > 1 ∧ q > 1 →
  ∃ (w : Window), has_factor_alignment(n, w)

8. Algorithmic Implementation

-- Efficient Algorithms

algorithm compute_basis : CliffordBundle
  for i in 0..255:
    basis[i] := construct_basis_element(i)
  return basis

algorithm factor_number(n : ℕ+) : Option (ℕ+ × ℕ+)
  channels := channel_decompose(n)
  resonances := map resonance channels
  
  -- Strategy 1: Window alignment
  for window_size in 1..min(8, length(channels)):
    for start in 0..length(channels) - window_size:
      if check_alignment(resonances, start, window_size, n):
        factors := extract_from_alignment(n, start, window_size)
        if verify_factors(n, factors):
          return factors
  
  -- Strategy 2: Coherence minimization
  return minimize_coherence_factorization(n)

algorithm check_primality(n : ℕ+) : Bool
  embedding := embed_nat(n)
  return is_intrinsic_prime(embedding)

9. Consistency Requirements

-- Internal Consistency Conditions

axiom grading_consistency :
  ∀ (σ τ : Section) (i j : Grade),
  grade(σ) = i ∧ grade(τ) = j →
  grade(σ * τ) = (i + j) mod 2

axiom embedding_homomorphism :
  ∀ (a b : ℕ+),
  embed_nat(a * b) = embed_nat(a) * embed_nat(b)

axiom resonance_pattern_invariant :
  ∀ (n : ℕ+) (g : G),
  channel_resonance(n) = channel_resonance(g · n)

10. Metatheoretical Properties

-- Soundness
meta theorem coc_sound :
  All theorems provable in COC are true in standard arithmetic

-- Relative Completeness  
meta theorem coc_complete :
  All true statements about factorization are provable in COC + large cardinal axioms

-- Conservativity
meta theorem coc_conservative :
  COC proves no new theorems about ℕ that aren't provable in PA

This formal specification provides a complete mathematical foundation for the Coherent Object Calculus, ready for implementation in a proof assistant or as the basis for a computational system.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment