Just as traditional storage systems offer block, object, and file representations of data, resonance-based storage provides multiple complementary views of the same underlying information. Each representation optimizes for different access patterns while maintaining the core resonance addressing.
Similar to: S3, Azure Blob Storage
Key: Resonance value (float)
Value: Arbitrary data + metadata
class ResonanceObject:
"""Object-like representation"""
resonance: float # Primary key
data: bytes # Actual content
pattern: BinaryPattern # Field activation
metadata: Dict # User metadata
artifacts: List # Transformation history
def to_dict(self):
return {
'resonance': self.resonance,
'data': self.data,
'fields': self.pattern.active_fields,
'metadata': self.metadata
}Use Cases:
- Document storage
- Media files
- API responses
- Unstructured data
Access Pattern:
# Store
obj = storage.put_object(data="Hello, World!")
# Returns: resonance value 2.847...
# Retrieve
obj = storage.get_object(2.847)
# Returns: ResonanceObjectSimilar to: EBS, Block devices
Structure: Fixed-size blocks organized by field patterns
class FieldBlock:
"""Block-like representation - fixed size chunks"""
block_id: int # Sequential block number
field_index: int # Which field (0-7)
resonance_range: Tuple # (min, max) resonance in block
data: np.array # Fixed-size data array
# Each block contains items with same field pattern
field_pattern: BinaryPattern
items: List[ResonanceItem]Storage Layout:
Field 0 (Identity): [Block 0][Block 1][Block 2]...
Field 1 (Growth): [Block 0][Block 1][Block 2]...
Field 2 (φ): [Block 0][Block 1][Block 2]...
...
Use Cases:
- Time-series data
- Numerical computations
- Fixed-record databases
- High-performance sequential access
Access Pattern:
# Write blocks
blocks = storage.write_blocks(
field=2, # φ field
data=numpy_array,
block_size=4096
)
# Read blocks
data = storage.read_blocks(
field=2,
start_block=0,
count=10
)Similar to: Neo4j, Graph databases
Structure: Nodes and edges with resonance-based addressing
class ResonanceNode:
"""Graph node representation"""
resonance: float
data: Any
edges: List[ResonanceEdge]
class ResonanceEdge:
"""Edge between resonances"""
source: float # Source resonance
target: float # Target resonance
weight: float # Resonance similarity
artifact: Artifact # Transformation that created edgeUse Cases:
- Knowledge graphs
- Social networks
- Dependency tracking
- Semantic relationships
Access Pattern:
# Create nodes and edges
node1 = storage.create_node(data="Quantum")
node2 = storage.create_node(data="Computing")
edge = storage.create_edge(node1, node2, weight=0.85)
# Traverse
neighbors = storage.get_neighbors(node1.resonance, radius=0.2)
path = storage.shortest_path(node1.resonance, node2.resonance)Similar to: Parquet, Columnar databases
Structure: Columns organized by field activation
class ResonanceColumn:
"""Column-oriented representation"""
field_mask: BinaryPattern # Which fields define this column
resonances: np.array # Sorted resonance values
data: pa.Table # Arrow/Parquet table
def query(self, predicate):
"""Efficient columnar query"""
mask = self.evaluate_predicate(predicate)
return self.data.filter(mask)Storage Layout:
Column[0,1,2]: # Items with fields 0,1,2 active
resonances: [1.234, 1.456, 1.789, ...]
data: [row1, row2, row3, ...]
Column[0,2,5]: # Items with fields 0,2,5 active
resonances: [2.345, 2.567, 2.890, ...]
data: [row1, row2, row3, ...]
Use Cases:
- Analytics queries
- Aggregations
- Field-based filtering
- OLAP workloads
Similar to: Kafka, Event streams
Structure: Append-only log organized by resonance ranges
class ResonanceStream:
"""Stream representation"""
stream_id: str
resonance_window: Tuple[float, float]
partitions: List[StreamPartition]
class StreamPartition:
"""Ordered sequence of events"""
partition_id: int
resonance_range: Tuple
events: List[ResonanceEvent]
offset: intUse Cases:
- Event sourcing
- Change data capture
- Real-time processing
- Audit logs
Access Pattern:
# Publish events
stream.publish(event_data)
# Subscribe to resonance range
subscription = stream.subscribe(
min_resonance=2.0,
max_resonance=3.0
)
for event in subscription:
process(event)Similar to: TensorFlow TFRecords, HDF5
Structure: Multi-dimensional arrays with resonance indexing
class ResonanceTensor:
"""Tensor representation"""
shape: Tuple[int, ...]
dtype: np.dtype
field_dimensions: Dict[int, int] # Field → tensor dimension
data: np.ndarray
resonance_index: Dict[Tuple, float]Use Cases:
- Machine learning datasets
- Scientific computing
- Image/video storage
- Multi-dimensional analysis
All representations share a common access layer:
class UnifiedResonanceStorage:
"""Unified interface to all representations"""
def store(self, data: Any, representation: str = 'auto'):
"""Store data in specified representation"""
resonance = self.compute_resonance(data)
if representation == 'auto':
representation = self.detect_best_representation(data)
if representation == 'object':
return self.object_store.put(resonance, data)
elif representation == 'block':
return self.block_store.write(resonance, data)
elif representation == 'graph':
return self.graph_store.create_node(resonance, data)
# ... etc
def retrieve(self, resonance: float, representation: str = 'object'):
"""Retrieve in specified representation"""
# Can convert between representations on the fly
pass
def transform_representation(self, resonance: float,
from_repr: str, to_repr: str):
"""Transform between representations"""
data = self.retrieve(resonance, from_repr)
return self.store(data, to_repr)| Use Case | Best Representation | Why |
|---|---|---|
| REST API data | Object | Variable size, self-contained |
| Time series | Block | Sequential access, fixed records |
| Knowledge base | Graph | Relationship traversal |
| Analytics | Column | Efficient aggregation |
| Event logs | Stream | Append-only, temporal |
| ML datasets | Tensor | Multi-dimensional operations |
The power comes from combining representations:
query HybridQuery {
# Start with object
document: resonance(address: 2.847) {
data
# Switch to graph view
relatedDocuments: neighbors(radius: 0.2) {
resonance
# Use column view for analytics
fieldStatistics: columnView {
avgResonance
fieldDistribution
}
}
# Check stream for updates
recentChanges: streamView(since: "1hour") {
events {
timestamp
artifact
}
}
}
}┌─────────────────────────────────────────┐
│ Unified Resonance API │
├─────────────────────────────────────────┤
│ Object │ Block │ Graph │ Column │Stream│
├─────────────────────────────────────────┤
│ Resonance Index Layer │
├─────────────────────────────────────────┤
│ Physical Storage (S3, SSD, etc) │
└─────────────────────────────────────────┘
# Frequently accessed objects get promoted to block storage
# for faster sequential access
if access_count > threshold:
promote_to_block_storage(resonance)# Convert between representations only when needed
def get_as_graph(resonance):
if not exists_in_graph_store(resonance):
obj = get_from_object_store(resonance)
convert_to_graph(obj)
return get_from_graph_store(resonance)# Partition data by active fields for better locality
def partition_by_fields(data):
partitions = defaultdict(list)
for item in data:
key = tuple(item.pattern.active_fields)
partitions[key].append(item)
return partitionsThe multi-representation architecture of resonance storage provides:
- Flexibility: Choose the best representation for each use case
- Performance: Optimized access patterns for different workloads
- Interoperability: Transform between representations seamlessly
- Completeness: Cover all traditional storage paradigms
Just as traditional systems evolved from "one-size-fits-all" to specialized storage types, resonance storage embraces multiple representations while maintaining the unified addressing scheme of mathematical resonance.