Last active
October 28, 2023 11:51
-
-
Save afiodorov/f0214e317bd82fa610d6172d190896f6 to your computer and use it in GitHub Desktop.
Run your own LLM & create an api endpoint for predictions
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Docker Image : pytorch/pytorch | |
Image Runtype : jupyter_direc ssh_direc ssh_proxy | |
Environment : [["JUPYTER_DIR", "/"], ["-p 41654:41654", "1"]] | |
pip install torch bitsandbytes sentencepiece "protobuf<=3.20.2" git+https://github.com/huggingface/transformers flask python-dotenv Flask-HTTPAuth accelerate | |
!mv /opt/conda/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cuda116.so /opt/conda/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cpu.so |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
model_name = "ehartford/WizardLM-13B-Uncensored" | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, torch_dtype=torch.float16, device_map="auto", load_in_8bit=True | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
@torch.inference_mode() | |
def generate_text(input_text): | |
input_ids = tokenizer([input_text]).input_ids | |
output_ids = model.generate( | |
torch.as_tensor(input_ids).cuda(), | |
do_sample=True, | |
temperature=0.8, | |
max_new_tokens=2048, | |
) | |
outputs = tokenizer.decode( | |
output_ids[0][len(input_ids[0]) :], | |
skip_special_tokens=True, | |
spaces_between_special_tokens=False, | |
) | |
return outputs | |
servers = [] | |
threads = [] | |
import os | |
import threading | |
from dotenv import load_dotenv | |
from flask import Flask, jsonify, make_response, request | |
from flask_httpauth import HTTPBasicAuth | |
from werkzeug.serving import make_server | |
load_dotenv(override=True) | |
user = os.environ["USER"] | |
pass_ = os.environ["PASS"] | |
app = Flask(__name__) | |
auth = HTTPBasicAuth() | |
@auth.verify_password | |
def verify_password(username, password): | |
if username == user and password == pass_: | |
return username | |
return None | |
@auth.error_handler | |
def unauthorized(): | |
return make_response(jsonify({"error": "Unauthorized access"}), 401) | |
@app.route("/", methods=["POST"]) | |
@auth.login_required | |
def completion(): | |
data = request.get_json() | |
if not data or not data["prompt"]: | |
return jsonify({"error": "No JSON data received"}), 400 | |
try: | |
completion = generate_text(data["prompt"]) | |
except Exception as e: | |
app.logger.exception("couldn't query t he model") | |
return jsonify({"error": "Couldn't run the inference"}), 500 | |
return jsonify({"completion": completion}) | |
def run_flask_app(): | |
server = make_server("0.0.0.0", 41654, app) | |
servers.append(server) | |
server.serve_forever() | |
thread = threading.Thread(target=run_flask_app) | |
threads.append(thread) | |
thread.start() | |
def shutdown(): | |
for s in servers: | |
s.shutdown() | |
for t in threads: | |
t.join() | |
servers.clear() | |
threads.clear() | |
shutdown() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment