Last active
September 29, 2022 21:37
-
-
Save aflaag/864734985670dc149fabc4408ccbf3e6 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from PIL import Image | |
import jax.numpy as jnp | |
import numpy as np | |
import jax | |
from IPython import display | |
STEP_SIZE = 1e-3 | |
BETA = 0.9 | |
BATCH_SIZE = 32 | |
data = x_train | |
labels = y_train | |
def save_params(params): | |
for idx, param in enumerate(params): | |
jnp.save(f"classif/{idx}", param) | |
def generate_image(image_array): | |
reshaped = np.array(image_array).reshape((28, 28)) | |
return Image.fromarray(reshaped) | |
def load_params(folder): | |
return [jnp.load(f"{folder}/{idx}.npy") for idx in range(6)] | |
def generate_params(key, layers_info): | |
params = [] | |
for i in range(len(layers_info) - 1): | |
width = layers_info[i] | |
height = layers_info[i + 1] | |
key, w_seed = jax.random.split(key) | |
w = jax.random.normal(w_seed, (height, width)) * STEP_SIZE | |
key, b_seed = jax.random.split(key) | |
b = jax.random.normal(b_seed, (height, 1)) * STEP_SIZE | |
params.append(w) | |
params.append(b) | |
return params | |
def generate_momentum(layers_info): | |
momentum = [] | |
for i in range(len(layers_info) - 1): | |
width = layers_info[i] | |
height = layers_info[i + 1] | |
w = jnp.zeros((height, width)) | |
b = jnp.zeros((height, 1)) | |
momentum.append(w) | |
momentum.append(b) | |
return momentum | |
def feed_forward(params, x): | |
inp = x | |
for i in range(0, len(params) - 2, 2): | |
w, b = params[i: i + 2] | |
inp = jax.nn.relu(w @ inp + b) | |
w, b = params[len(params) - 2 : len(params)] | |
return jax.nn.softmax(w @ inp + b, axis=0) | |
# return w @ inp + b | |
def cross_entropy(p, q): | |
return - jnp.sum(p * jnp.log(q + 1e-10)) | |
def loss(params, x, y): | |
out = feed_forward(params, x) | |
return cross_entropy(y, out) | |
@jax.jit | |
def step(params, momentum, xs, ys): | |
batch_loss = lambda params, batch_x, batch_y : jax.vmap(loss, in_axes=(None, 0, 0))(params, batch_x, batch_y).mean() | |
loss_value, gradient = jax.value_and_grad(batch_loss)(params, xs, ys) | |
new_momentum = [m * BETA + g for m, g in zip(momentum, gradient)] | |
new_params = [p - m * STEP_SIZE for p, m in zip(params, momentum)] | |
return new_params, new_momentum, loss_value | |
key = jax.random.PRNGKey(0) | |
layers_info = [784, 32, 32, 10] | |
params = generate_params(key, layers_info) | |
momentum = generate_momentum(layers_info) | |
c = 0 | |
for e in range(100): | |
key, seed = jax.random.split(key) | |
# this will yield the same permutation | |
data = jax.random.permutation(seed, data) | |
labels = jax.random.permutation(seed, labels) | |
for i in range(0, 60_000, BATCH_SIZE): | |
params, momentum, loss_value = step(params, momentum, data[i : i + BATCH_SIZE], labels[i : i + BATCH_SIZE]) | |
if c == 1000: | |
print(e, loss_value) | |
c = 0 | |
else: | |
c += 1 | |
save_params(params) | |
save_params(params) | |
# params = load_params("classif") | |
giusti = 0 | |
for i, (x, y) in enumerate(zip(x_test, y_test)): | |
key, seed = jax.random.split(key) | |
#random_image = jax.random.choice(seed, data) | |
#random_image_label = jax.random.choice(seed, labels) | |
out = feed_forward(params, x) | |
loss_v = cross_entropy(y, out) | |
out_value = jnp.argmax(out) | |
y_value = jnp.argmax(y) | |
if out_value == y_value: | |
giusti += 1 | |
else: | |
generate_image(x * 255).convert('RGB').save(f"{i}.png") | |
print(i, out_value, y_value) | |
#print(loss_v, out_value, y_value) | |
print(giusti / 10000 * 100) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment