Last active
April 15, 2021 17:01
-
-
Save aflansburg/86884422abcd51090b7ebf4f83939a79 to your computer and use it in GitHub Desktop.
Tabular Null Value Check display Function for Pandas Dataframe
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Not my original function - looking for citation | |
def missing_check(df): | |
null_val_sum = df.isnull().sum() | |
total = df.isnull().sum().sort_values(ascending=False) # total null values | |
percent = (null_val_sum/df.isnull().count()).sort_values(ascending=False) | |
missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) | |
return missing_data | |
''' | |
Example: | |
missing_data(df_with_nulls) | |
Output: | |
--------------------------- | |
Total Percent | |
HDI for year 19590 0.704170 | |
country 554 0.019914 | |
sex 495 0.017793 | |
population 459 0.016499 | |
year 447 0.016068 | |
gdp_per_capita ($) 440 0.015816 | |
age 395 0.014198 | |
suicides_no 390 0.014019 | |
country-year 381 0.013695 | |
suicides/100k pop 371 0.013336 | |
gdp_for_year ($) 370 0.013300 | |
generation 368 0.013228 | |
''' |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment