Created
January 31, 2019 00:43
-
-
Save afonsomatos/bed9b6cb8c7a01d9337364c1c0594ac8 to your computer and use it in GitHub Desktop.
neural in c++
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <iostream> | |
#include "NeuralNetwork.h" | |
using namespace std; | |
using namespace Eigen; | |
NeuralNetwork::NeuralNetwork(vector<int> nodes, double learning_rate) | |
: nodes{ nodes }, learning_rate{ learning_rate }, layers { nodes.size() } | |
{ | |
// Initialize weights | |
MatrixXd mat; | |
for (size_t i = 0; i < layers - 1; ++i) | |
{ | |
mat = MatrixXd::Random(nodes[i + 1], nodes[i]); | |
weights.push_back(mat); | |
} | |
} | |
void NeuralNetwork::train(VectorXd input, VectorXd target) | |
{ | |
vector<VectorXd> result = query(input); | |
VectorXd error = target - result.back(); | |
vector<VectorXd>::reverse_iterator rt = result.rbegin(); | |
vector<MatrixXd>::reverse_iterator wt = weights.rbegin(); | |
VectorXd previous; | |
ArrayXd z; | |
MatrixXd delta; | |
// Back propagation algorithm | |
for (; rt != result.rend() - 1; ++rt, wt++) | |
{ | |
previous = *(rt + 1); | |
z = rt->array(); | |
z *= error.array() * (1 - z); | |
delta = learning_rate * z.matrix() * previous.transpose(); | |
// Next layer's error | |
error = wt->transpose() * error; | |
*wt += delta; | |
} | |
} | |
double expit(double x) | |
{ | |
return 1 / (1 + exp(-x)); | |
} | |
vector<VectorXd> NeuralNetwork::query(VectorXd output) | |
{ | |
vector<VectorXd> result{ output }; | |
for (MatrixXd & w : weights) | |
{ | |
output = (w * output).unaryExpr(&expit); | |
result.push_back(output); | |
} | |
return result; | |
} | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#pragma once | |
#include <vector> | |
#include <Eigen/Dense> | |
struct NeuralNetwork | |
{ | |
NeuralNetwork(std::vector<int> nodes, double learning_rate); | |
std::vector<int> nodes; | |
double learning_rate; | |
size_t layers; | |
std::vector<Eigen::MatrixXd> weights; | |
void train(Eigen::VectorXd input, Eigen::VectorXd target); | |
std::vector<Eigen::VectorXd> query(Eigen::VectorXd input); | |
}; |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment