Created
November 14, 2018 22:16
-
-
Save afshinrahimi/976cf2dc6d3821ee4e9d0b4571053ff2 to your computer and use it in GitHub Desktop.
gcn run on cmu
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
conda activate py27 | |
(py27) ash@ash-ThinkPad-T470:~/Documents/geographconv$ THEANO_FLAGS='device=cuda0,floatX=float32' nice -n 9 python -u gcnmain.py -hid 300 300 300 -bucket 50 -batch 500 -d ./data/cmu/ -enc latin1 -mindf 10 -reg 0.0 -dropout 0.5 -cel 5 -highway | |
11/15/2018 09:10:49 AM Could not initialize pygpu, support disabled | |
Traceback (most recent call last): | |
File "/home/ash/miniconda3/envs/py27/lib/python2.7/site-packages/theano/gpuarray/__init__.py", line 227, in <module> | |
use(config.device) | |
File "/home/ash/miniconda3/envs/py27/lib/python2.7/site-packages/theano/gpuarray/__init__.py", line 214, in use | |
init_dev(device, preallocate=preallocate) | |
File "/home/ash/miniconda3/envs/py27/lib/python2.7/site-packages/theano/gpuarray/__init__.py", line 99, in init_dev | |
**args) | |
File "pygpu/gpuarray.pyx", line 658, in pygpu.gpuarray.init | |
File "pygpu/gpuarray.pyx", line 587, in pygpu.gpuarray.pygpu_init | |
GpuArrayException: Could not load "libnvrtc.so": libnvrtc.so: cannot open shared object file: No such file or directory | |
11/15/2018 09:10:49 AM In order to work for big datasets fix https://github.com/Theano/Theano/pull/5721 should be applied to theano. | |
11/15/2018 09:10:49 AM loading data from dumped file... | |
11/15/2018 09:10:49 AM loading data finished! | |
11/15/2018 09:10:49 AM stacking training, dev and test features and creating indices... | |
11/15/2018 09:10:49 AM running mlp with graph conv... | |
11/15/2018 09:10:49 AM highway is True | |
11/15/2018 09:10:49 AM Graphconv model input size 9467, output size 129 and hidden layers [300, 300, 300] regul 0.0 dropout 0.5. | |
11/15/2018 09:10:49 AM 3 gconv layers | |
/home/ash/miniconda3/envs/py27/lib/python2.7/site-packages/lasagne/layers/helper.py:216: UserWarning: get_output() was called with unused kwargs: | |
A | |
% "\n\t".join(suggestions)) | |
/home/ash/Documents/geographconv/gcnmodel.py:402: UserWarning: theano.function was asked to create a function computing outputs given certain inputs, but the provided input variable at index 1 is not part of the computational graph needed to compute the outputs: SparseVariable{csr,float32}. | |
To make this warning into an error, you can pass the parameter on_unused_input='raise' to theano.function. To disable it completely, use on_unused_input='ignore'. | |
self.f_gates.append(theano.function([self.X_sym, self.A_sym], self.gate_outputs[i], on_unused_input='warn')) | |
11/15/2018 09:10:54 AM ***********percentile 1.000000 ****************** | |
11/15/2018 09:10:54 AM 5685 training samples | |
11/15/2018 09:10:54 AM training for 10000 epochs with batch size 500 | |
11/15/2018 09:10:55 AM epoch 0 train loss 4.86 train acc 0.01 val loss 4.86 val acc 0.01 best val acc 0.01 maxdown 0 | |
11/15/2018 09:10:56 AM epoch 1 train loss 4.85 train acc 0.08 val loss 4.85 val acc 0.03 best val acc 0.03 maxdown 0 | |
11/15/2018 09:10:57 AM epoch 2 train loss 4.83 train acc 0.14 val loss 4.85 val acc 0.04 best val acc 0.04 maxdown 0 | |
11/15/2018 09:10:58 AM epoch 3 train loss 4.82 train acc 0.15 val loss 4.84 val acc 0.04 best val acc 0.04 maxdown 0 | |
11/15/2018 09:10:59 AM epoch 4 train loss 4.80 train acc 0.16 val loss 4.84 val acc 0.03 best val acc 0.03 maxdown 0 | |
11/15/2018 09:11:00 AM epoch 5 train loss 4.79 train acc 0.16 val loss 4.83 val acc 0.04 best val acc 0.04 maxdown 0 | |
11/15/2018 09:11:01 AM epoch 6 train loss 4.77 train acc 0.17 val loss 4.82 val acc 0.04 best val acc 0.04 maxdown 0 | |
11/15/2018 09:11:02 AM epoch 7 train loss 4.75 train acc 0.18 val loss 4.81 val acc 0.04 best val acc 0.04 maxdown 0 | |
11/15/2018 09:11:03 AM epoch 8 train loss 4.73 train acc 0.20 val loss 4.80 val acc 0.04 best val acc 0.04 maxdown 0 | |
11/15/2018 09:11:04 AM epoch 9 train loss 4.71 train acc 0.23 val loss 4.79 val acc 0.06 best val acc 0.06 maxdown 0 | |
11/15/2018 09:11:05 AM epoch 10 train loss 4.69 train acc 0.25 val loss 4.78 val acc 0.08 best val acc 0.08 maxdown 0 | |
11/15/2018 09:11:06 AM epoch 11 train loss 4.67 train acc 0.27 val loss 4.76 val acc 0.10 best val acc 0.10 maxdown 0 | |
11/15/2018 09:11:07 AM epoch 12 train loss 4.65 train acc 0.30 val loss 4.75 val acc 0.11 best val acc 0.11 maxdown 0 | |
11/15/2018 09:11:08 AM epoch 13 train loss 4.62 train acc 0.32 val loss 4.74 val acc 0.12 best val acc 0.12 maxdown 0 | |
11/15/2018 09:11:09 AM epoch 14 train loss 4.59 train acc 0.33 val loss 4.72 val acc 0.13 best val acc 0.13 maxdown 0 | |
11/15/2018 09:11:09 AM epoch 15 train loss 4.56 train acc 0.34 val loss 4.70 val acc 0.14 best val acc 0.14 maxdown 0 | |
11/15/2018 09:11:10 AM epoch 16 train loss 4.53 train acc 0.36 val loss 4.68 val acc 0.15 best val acc 0.15 maxdown 0 | |
11/15/2018 09:11:11 AM epoch 17 train loss 4.50 train acc 0.38 val loss 4.66 val acc 0.15 best val acc 0.15 maxdown 0 | |
11/15/2018 09:11:12 AM epoch 18 train loss 4.47 train acc 0.39 val loss 4.64 val acc 0.16 best val acc 0.16 maxdown 0 | |
11/15/2018 09:11:13 AM epoch 19 train loss 4.44 train acc 0.40 val loss 4.62 val acc 0.17 best val acc 0.17 maxdown 0 | |
11/15/2018 09:11:14 AM epoch 20 train loss 4.40 train acc 0.40 val loss 4.60 val acc 0.17 best val acc 0.17 maxdown 0 | |
11/15/2018 09:11:15 AM epoch 21 train loss 4.37 train acc 0.42 val loss 4.58 val acc 0.17 best val acc 0.17 maxdown 0 | |
11/15/2018 09:11:16 AM epoch 22 train loss 4.33 train acc 0.42 val loss 4.55 val acc 0.18 best val acc 0.18 maxdown 0 | |
11/15/2018 09:11:17 AM epoch 23 train loss 4.30 train acc 0.43 val loss 4.53 val acc 0.18 best val acc 0.18 maxdown 0 | |
11/15/2018 09:11:18 AM epoch 24 train loss 4.26 train acc 0.44 val loss 4.51 val acc 0.18 best val acc 0.18 maxdown 0 | |
11/15/2018 09:11:19 AM epoch 25 train loss 4.22 train acc 0.44 val loss 4.48 val acc 0.18 best val acc 0.18 maxdown 0 | |
11/15/2018 09:11:20 AM epoch 26 train loss 4.18 train acc 0.45 val loss 4.46 val acc 0.20 best val acc 0.20 maxdown 0 | |
11/15/2018 09:11:21 AM epoch 27 train loss 4.15 train acc 0.46 val loss 4.44 val acc 0.20 best val acc 0.20 maxdown 0 | |
11/15/2018 09:11:22 AM epoch 28 train loss 4.11 train acc 0.46 val loss 4.42 val acc 0.20 best val acc 0.20 maxdown 0 | |
11/15/2018 09:11:23 AM epoch 29 train loss 4.07 train acc 0.47 val loss 4.39 val acc 0.20 best val acc 0.20 maxdown 0 | |
11/15/2018 09:11:24 AM epoch 30 train loss 4.04 train acc 0.47 val loss 4.37 val acc 0.19 best val acc 0.19 maxdown 0 | |
11/15/2018 09:11:25 AM epoch 31 train loss 4.00 train acc 0.48 val loss 4.36 val acc 0.20 best val acc 0.20 maxdown 0 | |
11/15/2018 09:11:26 AM epoch 32 train loss 3.97 train acc 0.48 val loss 4.34 val acc 0.20 best val acc 0.20 maxdown 0 | |
11/15/2018 09:11:27 AM epoch 33 train loss 3.93 train acc 0.49 val loss 4.32 val acc 0.20 best val acc 0.20 maxdown 0 | |
11/15/2018 09:11:28 AM epoch 34 train loss 3.90 train acc 0.49 val loss 4.31 val acc 0.20 best val acc 0.20 maxdown 0 | |
11/15/2018 09:11:29 AM epoch 35 train loss 3.87 train acc 0.50 val loss 4.28 val acc 0.21 best val acc 0.21 maxdown 0 | |
11/15/2018 09:11:30 AM epoch 36 train loss 3.83 train acc 0.50 val loss 4.27 val acc 0.21 best val acc 0.21 maxdown 0 | |
11/15/2018 09:11:31 AM epoch 37 train loss 3.80 train acc 0.51 val loss 4.26 val acc 0.21 best val acc 0.21 maxdown 0 | |
11/15/2018 09:11:32 AM epoch 38 train loss 3.76 train acc 0.52 val loss 4.24 val acc 0.22 best val acc 0.22 maxdown 0 | |
11/15/2018 09:11:33 AM epoch 39 train loss 3.73 train acc 0.52 val loss 4.22 val acc 0.21 best val acc 0.21 maxdown 0 | |
11/15/2018 09:11:34 AM epoch 40 train loss 3.69 train acc 0.53 val loss 4.20 val acc 0.22 best val acc 0.22 maxdown 0 | |
11/15/2018 09:11:34 AM epoch 41 train loss 3.65 train acc 0.52 val loss 4.19 val acc 0.22 best val acc 0.22 maxdown 0 | |
11/15/2018 09:11:35 AM epoch 42 train loss 3.61 train acc 0.53 val loss 4.17 val acc 0.23 best val acc 0.23 maxdown 0 | |
11/15/2018 09:11:36 AM epoch 43 train loss 3.58 train acc 0.54 val loss 4.15 val acc 0.23 best val acc 0.23 maxdown 0 | |
11/15/2018 09:11:37 AM epoch 44 train loss 3.54 train acc 0.54 val loss 4.13 val acc 0.23 best val acc 0.23 maxdown 0 | |
11/15/2018 09:11:38 AM epoch 45 train loss 3.50 train acc 0.54 val loss 4.11 val acc 0.23 best val acc 0.23 maxdown 0 | |
11/15/2018 09:11:39 AM epoch 46 train loss 3.46 train acc 0.54 val loss 4.10 val acc 0.24 best val acc 0.24 maxdown 0 | |
11/15/2018 09:11:40 AM epoch 47 train loss 3.41 train acc 0.55 val loss 4.07 val acc 0.23 best val acc 0.23 maxdown 0 | |
11/15/2018 09:11:41 AM epoch 48 train loss 3.38 train acc 0.55 val loss 4.05 val acc 0.24 best val acc 0.24 maxdown 0 | |
11/15/2018 09:11:42 AM epoch 49 train loss 3.34 train acc 0.55 val loss 4.04 val acc 0.23 best val acc 0.23 maxdown 0 | |
11/15/2018 09:11:43 AM epoch 50 train loss 3.29 train acc 0.56 val loss 4.01 val acc 0.24 best val acc 0.24 maxdown 0 | |
11/15/2018 09:11:44 AM epoch 51 train loss 3.25 train acc 0.56 val loss 3.98 val acc 0.24 best val acc 0.24 maxdown 0 | |
11/15/2018 09:11:45 AM epoch 52 train loss 3.21 train acc 0.57 val loss 3.96 val acc 0.24 best val acc 0.24 maxdown 0 | |
11/15/2018 09:11:46 AM epoch 53 train loss 3.16 train acc 0.57 val loss 3.94 val acc 0.24 best val acc 0.24 maxdown 0 | |
11/15/2018 09:11:47 AM epoch 54 train loss 3.12 train acc 0.58 val loss 3.92 val acc 0.24 best val acc 0.24 maxdown 0 | |
11/15/2018 09:11:48 AM epoch 55 train loss 3.07 train acc 0.57 val loss 3.89 val acc 0.24 best val acc 0.24 maxdown 0 | |
11/15/2018 09:11:49 AM epoch 56 train loss 3.03 train acc 0.58 val loss 3.87 val acc 0.25 best val acc 0.25 maxdown 0 | |
11/15/2018 09:11:50 AM epoch 57 train loss 2.98 train acc 0.58 val loss 3.84 val acc 0.24 best val acc 0.24 maxdown 0 | |
11/15/2018 09:11:51 AM epoch 58 train loss 2.94 train acc 0.58 val loss 3.81 val acc 0.24 best val acc 0.24 maxdown 0 | |
11/15/2018 09:11:52 AM epoch 59 train loss 2.89 train acc 0.59 val loss 3.80 val acc 0.24 best val acc 0.24 maxdown 0 | |
11/15/2018 09:11:53 AM epoch 60 train loss 2.85 train acc 0.59 val loss 3.77 val acc 0.23 best val acc 0.23 maxdown 0 | |
11/15/2018 09:11:54 AM epoch 61 train loss 2.80 train acc 0.58 val loss 3.75 val acc 0.24 best val acc 0.24 maxdown 0 | |
11/15/2018 09:11:55 AM epoch 62 train loss 2.75 train acc 0.59 val loss 3.73 val acc 0.25 best val acc 0.25 maxdown 0 | |
11/15/2018 09:11:56 AM epoch 63 train loss 2.70 train acc 0.59 val loss 3.72 val acc 0.25 best val acc 0.25 maxdown 0 | |
11/15/2018 09:11:57 AM epoch 64 train loss 2.66 train acc 0.58 val loss 3.69 val acc 0.23 best val acc 0.23 maxdown 0 | |
11/15/2018 09:11:58 AM epoch 65 train loss 2.61 train acc 0.58 val loss 3.67 val acc 0.24 best val acc 0.24 maxdown 0 | |
11/15/2018 09:11:59 AM epoch 66 train loss 2.57 train acc 0.58 val loss 3.65 val acc 0.24 best val acc 0.24 maxdown 0 | |
11/15/2018 09:12:00 AM epoch 67 train loss 2.52 train acc 0.58 val loss 3.63 val acc 0.25 best val acc 0.25 maxdown 0 | |
11/15/2018 09:12:01 AM epoch 68 train loss 2.48 train acc 0.59 val loss 3.61 val acc 0.25 best val acc 0.25 maxdown 0 | |
11/15/2018 09:12:02 AM epoch 69 train loss 2.44 train acc 0.59 val loss 3.60 val acc 0.24 best val acc 0.24 maxdown 0 | |
11/15/2018 09:12:03 AM epoch 70 train loss 2.40 train acc 0.59 val loss 3.58 val acc 0.25 best val acc 0.25 maxdown 0 | |
11/15/2018 09:12:04 AM epoch 71 train loss 2.36 train acc 0.59 val loss 3.56 val acc 0.25 best val acc 0.25 maxdown 0 | |
11/15/2018 09:12:05 AM epoch 72 train loss 2.31 train acc 0.61 val loss 3.56 val acc 0.25 best val acc 0.25 maxdown 0 | |
11/15/2018 09:12:06 AM epoch 73 train loss 2.28 train acc 0.61 val loss 3.53 val acc 0.24 best val acc 0.24 maxdown 0 | |
11/15/2018 09:12:07 AM epoch 74 train loss 2.24 train acc 0.61 val loss 3.51 val acc 0.26 best val acc 0.26 maxdown 0 | |
11/15/2018 09:12:08 AM epoch 75 train loss 2.20 train acc 0.61 val loss 3.50 val acc 0.25 best val acc 0.25 maxdown 0 | |
11/15/2018 09:12:09 AM epoch 76 train loss 2.16 train acc 0.62 val loss 3.47 val acc 0.25 best val acc 0.25 maxdown 0 | |
11/15/2018 09:12:10 AM epoch 77 train loss 2.13 train acc 0.63 val loss 3.48 val acc 0.25 best val acc 0.25 maxdown 1 | |
11/15/2018 09:12:11 AM epoch 78 train loss 2.09 train acc 0.63 val loss 3.45 val acc 0.26 best val acc 0.26 maxdown 0 | |
11/15/2018 09:12:12 AM epoch 79 train loss 2.05 train acc 0.64 val loss 3.46 val acc 0.26 best val acc 0.26 maxdown 1 | |
11/15/2018 09:12:13 AM epoch 80 train loss 2.01 train acc 0.64 val loss 3.45 val acc 0.26 best val acc 0.26 maxdown 0 | |
11/15/2018 09:12:14 AM epoch 81 train loss 1.98 train acc 0.64 val loss 3.43 val acc 0.25 best val acc 0.25 maxdown 0 | |
11/15/2018 09:12:15 AM epoch 82 train loss 1.94 train acc 0.65 val loss 3.44 val acc 0.26 best val acc 0.25 maxdown 1 | |
11/15/2018 09:12:16 AM epoch 83 train loss 1.91 train acc 0.66 val loss 3.42 val acc 0.26 best val acc 0.26 maxdown 0 | |
11/15/2018 09:12:17 AM epoch 84 train loss 1.87 train acc 0.66 val loss 3.42 val acc 0.25 best val acc 0.26 maxdown 1 | |
11/15/2018 09:12:18 AM epoch 85 train loss 1.84 train acc 0.66 val loss 3.43 val acc 0.25 best val acc 0.26 maxdown 2 | |
11/15/2018 09:12:19 AM epoch 86 train loss 1.81 train acc 0.67 val loss 3.42 val acc 0.26 best val acc 0.26 maxdown 3 | |
11/15/2018 09:12:20 AM epoch 87 train loss 1.77 train acc 0.67 val loss 3.42 val acc 0.25 best val acc 0.26 maxdown 4 | |
11/15/2018 09:12:21 AM epoch 88 train loss 1.74 train acc 0.67 val loss 3.43 val acc 0.26 best val acc 0.26 maxdown 5 | |
11/15/2018 09:12:22 AM epoch 89 train loss 1.71 train acc 0.68 val loss 3.43 val acc 0.25 best val acc 0.26 maxdown 6 | |
11/15/2018 09:12:23 AM epoch 90 train loss 1.68 train acc 0.68 val loss 3.43 val acc 0.25 best val acc 0.26 maxdown 7 | |
11/15/2018 09:12:25 AM epoch 91 train loss 1.65 train acc 0.69 val loss 3.45 val acc 0.25 best val acc 0.26 maxdown 8 | |
11/15/2018 09:12:26 AM epoch 92 train loss 1.62 train acc 0.69 val loss 3.45 val acc 0.25 best val acc 0.26 maxdown 9 | |
11/15/2018 09:12:27 AM epoch 93 train loss 1.59 train acc 0.70 val loss 3.45 val acc 0.24 best val acc 0.26 maxdown 10 | |
11/15/2018 09:12:28 AM epoch 94 train loss 1.56 train acc 0.71 val loss 3.45 val acc 0.26 best val acc 0.26 maxdown 11 | |
11/15/2018 09:12:28 AM validation results went down. early stopping ... | |
11/15/2018 09:12:28 AM dev results: | |
11/15/2018 09:12:28 AM Mean: 520 Median: 46 Acc@161: 60 | |
11/15/2018 09:12:28 AM test results: | |
11/15/2018 09:12:29 AM Mean: 540 Median: 47 Acc@161: 60 | |
(py27) ash@ash-ThinkPad-T470:~/Documents/geographconv$ THEANO_FLAGS='device=cuda0,floatX=float32' nice -n 9 python -u gcnmain.py -hid 300 300 300 -bucket 50 -batch 500 -d ./data/cmu/ -enc latin1 -mindf 10 -reg 0.0 -dropout 0.5 -cel 5 -highway -seed 2018 | |
11/15/2018 09:13:10 AM Could not initialize pygpu, support disabled | |
Traceback (most recent call last): | |
File "/home/ash/miniconda3/envs/py27/lib/python2.7/site-packages/theano/gpuarray/__init__.py", line 227, in <module> | |
use(config.device) | |
File "/home/ash/miniconda3/envs/py27/lib/python2.7/site-packages/theano/gpuarray/__init__.py", line 214, in use | |
init_dev(device, preallocate=preallocate) | |
File "/home/ash/miniconda3/envs/py27/lib/python2.7/site-packages/theano/gpuarray/__init__.py", line 99, in init_dev | |
**args) | |
File "pygpu/gpuarray.pyx", line 658, in pygpu.gpuarray.init | |
File "pygpu/gpuarray.pyx", line 587, in pygpu.gpuarray.pygpu_init | |
GpuArrayException: Could not load "libnvrtc.so": libnvrtc.so: cannot open shared object file: No such file or directory | |
11/15/2018 09:13:10 AM In order to work for big datasets fix https://github.com/Theano/Theano/pull/5721 should be applied to theano. | |
11/15/2018 09:13:10 AM loading data from dumped file... | |
11/15/2018 09:13:10 AM loading data finished! | |
11/15/2018 09:13:10 AM stacking training, dev and test features and creating indices... | |
11/15/2018 09:13:10 AM running mlp with graph conv... | |
11/15/2018 09:13:10 AM highway is True | |
11/15/2018 09:13:10 AM Graphconv model input size 9467, output size 129 and hidden layers [300, 300, 300] regul 0.0 dropout 0.5. | |
11/15/2018 09:13:10 AM 3 gconv layers | |
/home/ash/miniconda3/envs/py27/lib/python2.7/site-packages/lasagne/layers/helper.py:216: UserWarning: get_output() was called with unused kwargs: | |
A | |
% "\n\t".join(suggestions)) | |
/home/ash/Documents/geographconv/gcnmodel.py:402: UserWarning: theano.function was asked to create a function computing outputs given certain inputs, but the provided input variable at index 1 is not part of the computational graph needed to compute the outputs: SparseVariable{csr,float32}. | |
To make this warning into an error, you can pass the parameter on_unused_input='raise' to theano.function. To disable it completely, use on_unused_input='ignore'. | |
self.f_gates.append(theano.function([self.X_sym, self.A_sym], self.gate_outputs[i], on_unused_input='warn')) | |
11/15/2018 09:13:15 AM ***********percentile 1.000000 ****************** | |
11/15/2018 09:13:15 AM 5685 training samples | |
11/15/2018 09:13:15 AM training for 10000 epochs with batch size 500 | |
11/15/2018 09:13:16 AM epoch 0 train loss 4.86 train acc 0.01 val loss 4.86 val acc 0.01 best val acc 0.01 maxdown 0 | |
11/15/2018 09:13:17 AM epoch 1 train loss 4.85 train acc 0.08 val loss 4.85 val acc 0.03 best val acc 0.03 maxdown 0 | |
11/15/2018 09:13:17 AM epoch 2 train loss 4.83 train acc 0.13 val loss 4.85 val acc 0.04 best val acc 0.04 maxdown 0 | |
11/15/2018 09:13:18 AM epoch 3 train loss 4.82 train acc 0.16 val loss 4.84 val acc 0.05 best val acc 0.05 maxdown 0 | |
11/15/2018 09:13:19 AM epoch 4 train loss 4.80 train acc 0.18 val loss 4.84 val acc 0.05 best val acc 0.05 maxdown 0 | |
11/15/2018 09:13:20 AM epoch 5 train loss 4.79 train acc 0.19 val loss 4.83 val acc 0.06 best val acc 0.06 maxdown 0 | |
11/15/2018 09:13:21 AM epoch 6 train loss 4.77 train acc 0.21 val loss 4.82 val acc 0.06 best val acc 0.06 maxdown 0 | |
11/15/2018 09:13:22 AM epoch 7 train loss 4.75 train acc 0.23 val loss 4.81 val acc 0.07 best val acc 0.07 maxdown 0 | |
11/15/2018 09:13:23 AM epoch 8 train loss 4.73 train acc 0.23 val loss 4.80 val acc 0.08 best val acc 0.08 maxdown 0 | |
11/15/2018 09:13:24 AM epoch 9 train loss 4.71 train acc 0.25 val loss 4.79 val acc 0.08 best val acc 0.08 maxdown 0 | |
11/15/2018 09:13:25 AM epoch 10 train loss 4.69 train acc 0.27 val loss 4.78 val acc 0.09 best val acc 0.09 maxdown 0 | |
11/15/2018 09:13:26 AM epoch 11 train loss 4.67 train acc 0.28 val loss 4.76 val acc 0.09 best val acc 0.09 maxdown 0 | |
11/15/2018 09:13:26 AM epoch 12 train loss 4.64 train acc 0.29 val loss 4.75 val acc 0.11 best val acc 0.11 maxdown 0 | |
11/15/2018 09:13:27 AM epoch 13 train loss 4.62 train acc 0.31 val loss 4.73 val acc 0.12 best val acc 0.12 maxdown 0 | |
11/15/2018 09:13:28 AM epoch 14 train loss 4.59 train acc 0.33 val loss 4.72 val acc 0.13 best val acc 0.13 maxdown 0 | |
11/15/2018 09:13:29 AM epoch 15 train loss 4.56 train acc 0.35 val loss 4.70 val acc 0.14 best val acc 0.14 maxdown 0 | |
11/15/2018 09:13:30 AM epoch 16 train loss 4.53 train acc 0.36 val loss 4.68 val acc 0.15 best val acc 0.15 maxdown 0 | |
11/15/2018 09:13:31 AM epoch 17 train loss 4.50 train acc 0.38 val loss 4.66 val acc 0.15 best val acc 0.15 maxdown 0 | |
11/15/2018 09:13:32 AM epoch 18 train loss 4.47 train acc 0.39 val loss 4.64 val acc 0.16 best val acc 0.16 maxdown 0 | |
11/15/2018 09:13:33 AM epoch 19 train loss 4.43 train acc 0.41 val loss 4.62 val acc 0.17 best val acc 0.17 maxdown 0 | |
11/15/2018 09:13:34 AM epoch 20 train loss 4.40 train acc 0.41 val loss 4.59 val acc 0.17 best val acc 0.17 maxdown 0 | |
11/15/2018 09:13:35 AM epoch 21 train loss 4.36 train acc 0.42 val loss 4.57 val acc 0.18 best val acc 0.18 maxdown 0 | |
11/15/2018 09:13:36 AM epoch 22 train loss 4.33 train acc 0.43 val loss 4.54 val acc 0.18 best val acc 0.18 maxdown 0 | |
11/15/2018 09:13:37 AM epoch 23 train loss 4.29 train acc 0.44 val loss 4.52 val acc 0.18 best val acc 0.18 maxdown 0 | |
11/15/2018 09:13:38 AM epoch 24 train loss 4.26 train acc 0.43 val loss 4.50 val acc 0.19 best val acc 0.19 maxdown 0 | |
11/15/2018 09:13:39 AM epoch 25 train loss 4.22 train acc 0.45 val loss 4.48 val acc 0.19 best val acc 0.19 maxdown 0 | |
11/15/2018 09:13:40 AM epoch 26 train loss 4.18 train acc 0.45 val loss 4.45 val acc 0.19 best val acc 0.19 maxdown 0 | |
11/15/2018 09:13:40 AM epoch 27 train loss 4.14 train acc 0.45 val loss 4.43 val acc 0.20 best val acc 0.20 maxdown 0 | |
11/15/2018 09:13:41 AM epoch 28 train loss 4.11 train acc 0.46 val loss 4.40 val acc 0.19 best val acc 0.19 maxdown 0 | |
11/15/2018 09:13:42 AM epoch 29 train loss 4.07 train acc 0.47 val loss 4.38 val acc 0.20 best val acc 0.20 maxdown 0 | |
11/15/2018 09:13:43 AM epoch 30 train loss 4.04 train acc 0.47 val loss 4.37 val acc 0.20 best val acc 0.20 maxdown 0 | |
11/15/2018 09:13:44 AM epoch 31 train loss 4.00 train acc 0.47 val loss 4.34 val acc 0.20 best val acc 0.20 maxdown 0 | |
11/15/2018 09:13:45 AM epoch 32 train loss 3.97 train acc 0.48 val loss 4.33 val acc 0.20 best val acc 0.20 maxdown 0 | |
11/15/2018 09:13:46 AM epoch 33 train loss 3.93 train acc 0.48 val loss 4.31 val acc 0.21 best val acc 0.21 maxdown 0 | |
11/15/2018 09:13:47 AM epoch 34 train loss 3.90 train acc 0.49 val loss 4.29 val acc 0.21 best val acc 0.21 maxdown 0 | |
11/15/2018 09:13:48 AM epoch 35 train loss 3.87 train acc 0.50 val loss 4.28 val acc 0.21 best val acc 0.21 maxdown 0 | |
11/15/2018 09:13:49 AM epoch 36 train loss 3.83 train acc 0.51 val loss 4.26 val acc 0.21 best val acc 0.21 maxdown 0 | |
11/15/2018 09:13:50 AM epoch 37 train loss 3.80 train acc 0.52 val loss 4.24 val acc 0.22 best val acc 0.22 maxdown 0 | |
11/15/2018 09:13:51 AM epoch 38 train loss 3.76 train acc 0.52 val loss 4.23 val acc 0.22 best val acc 0.22 maxdown 0 | |
11/15/2018 09:13:52 AM epoch 39 train loss 3.73 train acc 0.53 val loss 4.21 val acc 0.22 best val acc 0.22 maxdown 0 | |
11/15/2018 09:13:53 AM epoch 40 train loss 3.69 train acc 0.54 val loss 4.19 val acc 0.22 best val acc 0.22 maxdown 0 | |
11/15/2018 09:13:54 AM epoch 41 train loss 3.66 train acc 0.54 val loss 4.18 val acc 0.22 best val acc 0.22 maxdown 0 | |
11/15/2018 09:13:55 AM epoch 42 train loss 3.62 train acc 0.53 val loss 4.16 val acc 0.22 best val acc 0.22 maxdown 0 | |
11/15/2018 09:13:56 AM epoch 43 train loss 3.58 train acc 0.54 val loss 4.15 val acc 0.23 best val acc 0.23 maxdown 0 | |
11/15/2018 09:13:57 AM epoch 44 train loss 3.54 train acc 0.54 val loss 4.12 val acc 0.23 best val acc 0.23 maxdown 0 | |
11/15/2018 09:13:58 AM epoch 45 train loss 3.50 train acc 0.54 val loss 4.10 val acc 0.23 best val acc 0.23 maxdown 0 | |
11/15/2018 09:13:59 AM epoch 46 train loss 3.46 train acc 0.54 val loss 4.08 val acc 0.22 best val acc 0.22 maxdown 0 | |
11/15/2018 09:14:00 AM epoch 47 train loss 3.42 train acc 0.54 val loss 4.07 val acc 0.23 best val acc 0.23 maxdown 0 | |
11/15/2018 09:14:01 AM epoch 48 train loss 3.38 train acc 0.54 val loss 4.04 val acc 0.23 best val acc 0.23 maxdown 0 | |
11/15/2018 09:14:02 AM epoch 49 train loss 3.34 train acc 0.54 val loss 4.02 val acc 0.22 best val acc 0.22 maxdown 0 | |
11/15/2018 09:14:03 AM epoch 50 train loss 3.30 train acc 0.55 val loss 4.00 val acc 0.23 best val acc 0.23 maxdown 0 | |
11/15/2018 09:14:04 AM epoch 51 train loss 3.26 train acc 0.55 val loss 3.98 val acc 0.23 best val acc 0.23 maxdown 0 | |
11/15/2018 09:14:05 AM epoch 52 train loss 3.22 train acc 0.55 val loss 3.96 val acc 0.23 best val acc 0.23 maxdown 0 | |
11/15/2018 09:14:06 AM epoch 53 train loss 3.17 train acc 0.56 val loss 3.93 val acc 0.24 best val acc 0.24 maxdown 0 | |
11/15/2018 09:14:07 AM epoch 54 train loss 3.13 train acc 0.57 val loss 3.91 val acc 0.23 best val acc 0.23 maxdown 0 | |
11/15/2018 09:14:08 AM epoch 55 train loss 3.09 train acc 0.57 val loss 3.89 val acc 0.24 best val acc 0.24 maxdown 0 | |
11/15/2018 09:14:09 AM epoch 56 train loss 3.04 train acc 0.57 val loss 3.87 val acc 0.24 best val acc 0.24 maxdown 0 | |
11/15/2018 09:14:10 AM epoch 57 train loss 3.00 train acc 0.58 val loss 3.84 val acc 0.24 best val acc 0.24 maxdown 0 | |
11/15/2018 09:14:10 AM epoch 58 train loss 2.95 train acc 0.58 val loss 3.82 val acc 0.23 best val acc 0.23 maxdown 0 | |
11/15/2018 09:14:11 AM epoch 59 train loss 2.90 train acc 0.58 val loss 3.79 val acc 0.24 best val acc 0.24 maxdown 0 | |
11/15/2018 09:14:12 AM epoch 60 train loss 2.86 train acc 0.58 val loss 3.77 val acc 0.24 best val acc 0.24 maxdown 0 | |
11/15/2018 09:14:13 AM epoch 61 train loss 2.81 train acc 0.58 val loss 3.75 val acc 0.24 best val acc 0.24 maxdown 0 | |
11/15/2018 09:14:14 AM epoch 62 train loss 2.76 train acc 0.57 val loss 3.73 val acc 0.24 best val acc 0.24 maxdown 0 | |
11/15/2018 09:14:15 AM epoch 63 train loss 2.72 train acc 0.58 val loss 3.71 val acc 0.23 best val acc 0.23 maxdown 0 | |
11/15/2018 09:14:16 AM epoch 64 train loss 2.67 train acc 0.57 val loss 3.69 val acc 0.24 best val acc 0.24 maxdown 0 | |
11/15/2018 09:14:17 AM epoch 65 train loss 2.63 train acc 0.57 val loss 3.66 val acc 0.24 best val acc 0.24 maxdown 0 | |
11/15/2018 09:14:18 AM epoch 66 train loss 2.59 train acc 0.57 val loss 3.65 val acc 0.24 best val acc 0.24 maxdown 0 | |
11/15/2018 09:14:19 AM epoch 67 train loss 2.54 train acc 0.57 val loss 3.63 val acc 0.24 best val acc 0.24 maxdown 0 | |
11/15/2018 09:14:20 AM epoch 68 train loss 2.50 train acc 0.58 val loss 3.61 val acc 0.24 best val acc 0.24 maxdown 0 | |
11/15/2018 09:14:21 AM epoch 69 train loss 2.46 train acc 0.58 val loss 3.58 val acc 0.25 best val acc 0.25 maxdown 0 | |
11/15/2018 09:14:22 AM epoch 70 train loss 2.41 train acc 0.59 val loss 3.57 val acc 0.24 best val acc 0.24 maxdown 0 | |
11/15/2018 09:14:23 AM epoch 71 train loss 2.37 train acc 0.59 val loss 3.55 val acc 0.25 best val acc 0.25 maxdown 0 | |
11/15/2018 09:14:24 AM epoch 72 train loss 2.34 train acc 0.60 val loss 3.53 val acc 0.25 best val acc 0.25 maxdown 0 | |
11/15/2018 09:14:25 AM epoch 73 train loss 2.30 train acc 0.61 val loss 3.52 val acc 0.25 best val acc 0.25 maxdown 0 | |
11/15/2018 09:14:26 AM epoch 74 train loss 2.25 train acc 0.61 val loss 3.50 val acc 0.25 best val acc 0.25 maxdown 0 | |
11/15/2018 09:14:27 AM epoch 75 train loss 2.21 train acc 0.62 val loss 3.49 val acc 0.25 best val acc 0.25 maxdown 0 | |
11/15/2018 09:14:28 AM epoch 76 train loss 2.17 train acc 0.62 val loss 3.48 val acc 0.25 best val acc 0.25 maxdown 0 | |
11/15/2018 09:14:29 AM epoch 77 train loss 2.14 train acc 0.63 val loss 3.47 val acc 0.25 best val acc 0.25 maxdown 0 | |
11/15/2018 09:14:30 AM epoch 78 train loss 2.10 train acc 0.63 val loss 3.45 val acc 0.25 best val acc 0.25 maxdown 0 | |
11/15/2018 09:14:31 AM epoch 79 train loss 2.07 train acc 0.63 val loss 3.44 val acc 0.24 best val acc 0.24 maxdown 0 | |
11/15/2018 09:14:32 AM epoch 80 train loss 2.03 train acc 0.64 val loss 3.44 val acc 0.24 best val acc 0.24 maxdown 1 | |
11/15/2018 09:14:33 AM epoch 81 train loss 1.99 train acc 0.64 val loss 3.43 val acc 0.25 best val acc 0.25 maxdown 0 | |
11/15/2018 09:14:34 AM epoch 82 train loss 1.96 train acc 0.65 val loss 3.41 val acc 0.25 best val acc 0.25 maxdown 0 | |
11/15/2018 09:14:35 AM epoch 83 train loss 1.92 train acc 0.65 val loss 3.41 val acc 0.25 best val acc 0.25 maxdown 0 | |
11/15/2018 09:14:36 AM epoch 84 train loss 1.89 train acc 0.66 val loss 3.40 val acc 0.25 best val acc 0.25 maxdown 0 | |
11/15/2018 09:14:37 AM epoch 85 train loss 1.86 train acc 0.66 val loss 3.41 val acc 0.25 best val acc 0.25 maxdown 1 | |
11/15/2018 09:14:38 AM epoch 86 train loss 1.82 train acc 0.66 val loss 3.41 val acc 0.25 best val acc 0.25 maxdown 2 | |
11/15/2018 09:14:39 AM epoch 87 train loss 1.78 train acc 0.66 val loss 3.40 val acc 0.25 best val acc 0.25 maxdown 3 | |
11/15/2018 09:14:40 AM epoch 88 train loss 1.76 train acc 0.68 val loss 3.39 val acc 0.25 best val acc 0.25 maxdown 0 | |
11/15/2018 09:14:41 AM epoch 89 train loss 1.72 train acc 0.67 val loss 3.41 val acc 0.25 best val acc 0.25 maxdown 1 | |
11/15/2018 09:14:42 AM epoch 90 train loss 1.70 train acc 0.68 val loss 3.39 val acc 0.25 best val acc 0.25 maxdown 0 | |
11/15/2018 09:14:43 AM epoch 91 train loss 1.66 train acc 0.69 val loss 3.39 val acc 0.25 best val acc 0.25 maxdown 1 | |
11/15/2018 09:14:44 AM epoch 92 train loss 1.63 train acc 0.69 val loss 3.41 val acc 0.25 best val acc 0.25 maxdown 2 | |
11/15/2018 09:14:45 AM epoch 93 train loss 1.60 train acc 0.70 val loss 3.40 val acc 0.24 best val acc 0.25 maxdown 3 | |
11/15/2018 09:14:46 AM epoch 94 train loss 1.57 train acc 0.70 val loss 3.43 val acc 0.25 best val acc 0.25 maxdown 4 | |
11/15/2018 09:14:47 AM epoch 95 train loss 1.55 train acc 0.71 val loss 3.40 val acc 0.25 best val acc 0.25 maxdown 5 | |
11/15/2018 09:14:48 AM epoch 96 train loss 1.51 train acc 0.71 val loss 3.44 val acc 0.24 best val acc 0.25 maxdown 6 | |
11/15/2018 09:14:49 AM epoch 97 train loss 1.48 train acc 0.72 val loss 3.44 val acc 0.24 best val acc 0.25 maxdown 7 | |
11/15/2018 09:14:50 AM epoch 98 train loss 1.46 train acc 0.72 val loss 3.45 val acc 0.25 best val acc 0.25 maxdown 8 | |
11/15/2018 09:14:51 AM epoch 99 train loss 1.43 train acc 0.73 val loss 3.44 val acc 0.24 best val acc 0.25 maxdown 9 | |
11/15/2018 09:14:52 AM epoch 100 train loss 1.40 train acc 0.73 val loss 3.46 val acc 0.24 best val acc 0.25 maxdown 10 | |
11/15/2018 09:14:53 AM epoch 101 train loss 1.38 train acc 0.74 val loss 3.47 val acc 0.24 best val acc 0.25 maxdown 11 | |
11/15/2018 09:14:53 AM validation results went down. early stopping ... | |
11/15/2018 09:14:53 AM dev results: | |
11/15/2018 09:14:53 AM Mean: 528 Median: 45 Acc@161: 60 | |
11/15/2018 09:14:53 AM test results: | |
11/15/2018 09:14:54 AM Mean: 535 Median: 48 Acc@161: 60 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment