Created
August 25, 2016 08:39
-
-
Save agibsonccc/22c51855c1c421521dee2a3e15dd9a7b to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| /* | |
| * | |
| * * Copyright 2016 Skymind,Inc. | |
| * * | |
| * * Licensed under the Apache License, Version 2.0 (the "License"); | |
| * * you may not use this file except in compliance with the License. | |
| * * You may obtain a copy of the License at | |
| * * | |
| * * http://www.apache.org/licenses/LICENSE-2.0 | |
| * * | |
| * * Unless required by applicable law or agreed to in writing, software | |
| * * distributed under the License is distributed on an "AS IS" BASIS, | |
| * * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| * * See the License for the specific language governing permissions and | |
| * * limitations under the License. | |
| * | |
| */ | |
| package org.deeplearning4s.examples.mnist | |
| import org.deeplearning4j.datasets.iterator.impl.MnistDataSetIterator | |
| import org.deeplearning4j.eval.Evaluation | |
| import org.deeplearning4j.nn.api.OptimizationAlgorithm | |
| import org.deeplearning4j.optimize.listeners.ScoreIterationListener | |
| import org.deeplearning4s.layers.Dense | |
| import org.deeplearning4s.layers.convolutional.Convolution2D | |
| import org.deeplearning4s.layers.reshaping.{Flatten2D, Unflatten2D} | |
| import org.deeplearning4s.models.Sequential | |
| import org.nd4j.linalg.api.ndarray.INDArray | |
| import org.nd4j.linalg.dataset.api.DataSet | |
| import org.nd4j.linalg.dataset.api.iterator.DataSetIterator | |
| import org.nd4j.linalg.lossfunctions.LossFunctions.LossFunction | |
| import org.slf4j.{Logger, LoggerFactory} | |
| /** | |
| * Two-layer MLP for MNIST. | |
| * | |
| * @author David Kale | |
| */ | |
| object ConvNetMnistExample extends App { | |
| private val log: Logger = LoggerFactory.getLogger("yay") | |
| private val numRows: Int = 28 | |
| private val numColumns: Int = 28 | |
| private val numChannels: Int = 1 | |
| private val outputNum: Int = 10 | |
| private val batchSize: Int = 64 | |
| private val rngSeed: Int = 123 | |
| private val rate: Double = 0.0015 | |
| private val mnistTrain: DataSetIterator = new MnistDataSetIterator(batchSize, true, rngSeed) | |
| private val mnistTest: DataSetIterator = new MnistDataSetIterator(batchSize, false, rngSeed) | |
| log.info("Build model....") | |
| private val model: Sequential = new Sequential() | |
| model.add(new Unflatten2D(List(numRows, numColumns, numChannels), nIn = numRows * numColumns)) | |
| model.add(new Convolution2D(10, List(5, 5), activation = "identity")) | |
| model.add(new Flatten2D()) | |
| // model.add(new Convolution2D(10, List(5, 5), nIn = List(numRows, numColumns, numChannels), activation = "identity")) | |
| model.add(new Dense(500, numRows*numColumns, activation = "relu")) | |
| model.add(new Dense(100, activation = "relu")) | |
| model.add(new Dense(outputNum, activation = "softmax")) | |
| model.compile(LossFunction.MCXENT, OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT) | |
| log.info("Train model....") | |
| model.fit(mnistTrain, nbEpoch = 1, List(new ScoreIterationListener(5))) | |
| log.info("Evaluate model....") | |
| val evaluator: Evaluation = new Evaluation(outputNum) | |
| while(mnistTest.hasNext){ | |
| val next: DataSet = mnistTest.next() | |
| val output: INDArray = model.predict(next) | |
| evaluator.eval(next.getLabels, output) | |
| } | |
| log.info(evaluator.stats()) | |
| log.info("****************Example finished********************") | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment