by Ossi Hanhinen, @ohanhi
with the support of Futurice 💚.
Licensed under CC BY 4.0.
### | |
### | |
### UPDATE: For Win 11, I recommend using this tool in place of this script: | |
### https://christitus.com/windows-tool/ | |
### https://github.com/ChrisTitusTech/winutil | |
### https://www.youtube.com/watch?v=6UQZ5oQg8XA | |
### iwr -useb https://christitus.com/win | iex | |
### | |
### OR take a look at | |
### https://github.com/HotCakeX/Harden-Windows-Security |
Just a quickie test in Python 3 (using Requests) to see if Google Cloud Vision can be used to effectively OCR a scanned data table and preserve its structure, in the way that products such as ABBYY FineReader can OCR an image and provide Excel-ready output.
The short answer: No. While Cloud Vision provides bounding polygon coordinates in its output, it doesn't provide it at the word or region level, which would be needed to then calculate the data delimiters.
On the other hand, the OCR quality is pretty good, if you just need to identify text anywhere in an image, without regards to its physical coordinates. I've included two examples:
####### 1. A low-resolution photo of road signs
The list is now hosted on a repository so you can PR -> https://github.com/jeroenvdgulik/awesome-talks/blob/master/README.md
export NEO4J_HOME=${NEO4J_HOME-~/Downloads/neo4j-community-3.0.1} | |
if [ ! -f data-csv.zip ]; then | |
curl -OL https://cloudfront-files-1.publicintegrity.org/offshoreleaks/data-csv.zip | |
fi | |
export DATA=${PWD}/import | |
rm -rf $DATA |
export NEO4J_HOME=${NEO4J_HOME-~/Downloads/neo4j-community-3.0.1} | |
if [ ! -f data-csv.zip ]; then | |
curl -OL https://cloudfront-files-1.publicintegrity.org/offshoreleaks/data-csv.zip | |
fi | |
export DATA=${PWD}/import | |
unzip -o -j data-csv.zip -d $DATA |
# Docker Machine for Consul | |
docker-machine \ | |
create \ | |
-d virtualbox \ | |
consul-machine | |
# Start Consul | |
docker $(docker-machine config consul-machine) run -d --restart=always \ | |
-p "8500:8500" \ | |
-h "consul" \ |
#Install the required plugins | |
addon-install-from-git --url https://github.com/forge/wildfly-swarm-addon.git | |
addon-install-from-git --url https://github.com/forge/keycloak-addon.git | |
# Create the project and configure the WildFly Swarm maven plugin | |
project-new --named demo --stack JAVA_EE_7 --type wildfly-swarm | |
# Create the JPA entity | |
jpa-new-entity --named Customer |
CREATE TABLE json_store ( | |
name varchar(255) not null, | |
data text, | |
name_uuid PRIMARY KEY default gen_random_uuid() | |
); | |
ALTER TABLE json_store OWNER TO fusionpbx; | |
CREATE TABLE agents ( | |
name character varying(255), |
# if error writing `export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64"` | |
import tensorflow as tf | |
from tensorflow.examples.tutorials.mnist import input_data | |
def init_weights(shape, name): | |
return tf.Variable(tf.random_normal(shape, stddev=0.01), name=name) | |
# Step 1 - Add some items to graph section of Tensorboard |