Created
July 23, 2019 20:16
-
-
Save agoose77/ad10cdc3755c468c29cbd7b08caca2f3 to your computer and use it in GitHub Desktop.
Weighted 1D iterative least squares
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
def pearson_r(x: np.ndarray, y: np.ndarray) -> np.ndarray: | |
n = len(x) | |
return (n * x @ y - x.sum() * y.sum()) / np.sqrt( | |
(n * (x @ x) - x.sum() ** 2) * (n * (y @ y) - y.sum() ** 2) | |
) | |
def lstsq_1d( | |
x: np.darray, | |
y: np.darray, | |
w_x: np.ndarray, | |
w_y: np.ndarray, | |
r: np.ndarray = 0, | |
tolerance: float = 1e-15, | |
n: int = 50, | |
) -> np.ndarray: | |
"""Weighted least squares | |
:param x: | |
:param y: | |
:param w_x: | |
:param w_y: | |
:param r: | |
:param tolerance: | |
:param n: | |
:return: | |
""" | |
# https://birmingham-primo.hosted.exlibrisgroup.com/permalink/f/19a9mc5/TN_proquest216705896 | |
# DOI 10.1119/1.1632486 | |
assert n != 0 | |
# Initial least squares | |
A = np.vstack((x, np.ones_like(x))).T | |
(m, c), residuals, rank, s = np.linalg.lstsq(A, y) | |
alpha = np.sqrt(w_x * w_y) | |
i = 0 | |
while True: | |
if i == n: | |
break | |
i += 1 | |
# Step (3) | |
w = (w_x * w_y) / (w_x + m ** 2 * w_y - 2 * m * r * alpha) | |
# Step (4) | |
x_bar = (w @ x) / w.sum() | |
y_bar = (w @ y) / w.sum() | |
u = x - x_bar | |
v = y - y_bar | |
beta = w * (u / w_y + m * v / w_x - (m * u + v) * r / alpha) | |
# Step (5) | |
m_adj = ((w * beta) @ v) / ((w * beta) @ u) | |
if np.abs(m - m_adj) <= tolerance: | |
break | |
m = m_adj | |
c_adj = y_bar - m_adj * x_bar | |
# Errors | |
x_adj = x_bar + beta | |
# y_adj = y_bar + m_adj*beta | |
x_adj_bar = (w @ x_adj) / w.sum() | |
u_adj = x_adj - x_adj_bar | |
sigma_m = np.sqrt(1 / (w @ (u_adj ** 2))) | |
sigma_c = np.sqrt(1 / w.sum() + x_bar ** 2 * sigma_m ** 2) | |
return (m_adj, c_adj), (sigma_m, sigma_c) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment