Created
September 9, 2017 19:04
-
-
Save agramfort/df1c55fd60682680eb8751207d24f6b5 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from scipy import sparse | |
import matplotlib.pyplot as plt | |
import mne | |
from mne.datasets import sample | |
from mne import read_evokeds | |
from mne.minimum_norm import read_inverse_operator | |
print(__doc__) | |
data_path = sample.data_path() | |
fname_inv = data_path + '/MEG/sample/sample_audvis-meg-vol-7-meg-inv.fif' | |
fname_evoked = data_path + '/MEG/sample/sample_audvis-ave.fif' | |
subject = 'sample' | |
snr = 3.0 | |
lambda2 = 1.0 / snr ** 2 | |
method = "dSPM" # use dSPM method (could also be MNE or sLORETA) | |
# Load data | |
evoked = read_evokeds(fname_evoked, condition=0, baseline=(None, 0)) | |
inverse_operator = read_inverse_operator(fname_inv) | |
src = inverse_operator['src'] | |
def spatial_src_connectivity(src, subject=None): | |
# Export result as a 4D nifti object | |
from sklearn.feature_extraction import grid_to_graph | |
assert src[0]['type'] == 'vol' | |
if subject is None: | |
subject = src[0]['subject_his_id'] | |
vertices = np.where(src[0]['inuse'])[0] | |
n_vertices = len(vertices) | |
data = (1 + np.arange(n_vertices))[:, np.newaxis] | |
stc_tmp = mne.VolSourceEstimate(data, vertices, tmin=0., tstep=1., | |
subject=subject) | |
img = stc_tmp.as_volume(src, mri_resolution=False) | |
img_data = img.get_data()[:, :, :, 0] | |
img_data = img_data.T | |
graph = grid_to_graph(*img_data.shape, mask=(img_data != 0)) | |
return graph | |
graph = spatial_src_connectivity(src) | |
print(graph.shape) | |
stc_data = np.zeros((graph.shape[0], 1)) | |
stc_data[2000] = 1. | |
def mesh_smoothing_matrix(A): | |
inv_conn_idx = .75 / A.sum(axis=1) | |
A = sparse.spdiags(inv_conn_idx.T, 0, *A.shape).dot(A) | |
A.setdiag(np.ones(A.shape[0])) | |
return A | |
A = mesh_smoothing_matrix(graph) | |
for i in range(15): | |
stc_data = A.dot(stc_data) | |
vertices = np.where(src[0]['inuse'])[0] | |
stc_tmp = mne.VolSourceEstimate(stc_data, vertices, tmin=0., tstep=1., | |
subject=subject) | |
img = stc_tmp.as_volume(src, mri_resolution=False) | |
img_data = img.get_data()[:, :, :, 0] | |
plt.imshow(img_data[15]) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment