Created
December 18, 2024 07:56
-
-
Save ahallora/5279341bbef6165a9b909310a8440b57 to your computer and use it in GitHub Desktop.
Using Gemini AI With Typescript / Node.js / Next.js etc. (POC)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import { GoogleGenerativeAI, SchemaType } from "@google/generative-ai"; | |
const GEMINI_API_KEY = ""; // process.env.GEMINI_API_KEY | |
export const gemini = { | |
createEmbedding: async (content: string) => { | |
const genAI = new GoogleGenerativeAI(GEMINI_API_KEY); | |
const model = genAI.getGenerativeModel({ model: "text-embedding-004" }); | |
try { | |
const result = await model.embedContent(content); | |
return result.embedding.values; | |
} catch (e) { | |
console.error(e); | |
return e; | |
} | |
}, | |
generateContent: async ( | |
prompt: string, | |
schema?: any, // TODO: Get proper types | |
generationConfigExtra?: any // TODO: Get proper types | |
) => { | |
const genAI = new GoogleGenerativeAI(GEMINI_API_KEY); | |
const generationConfig = { | |
temperature: 1, | |
topP: 0.95, | |
topK: 64, | |
maxOutputTokens: 8192, | |
responseMimeType: "application/json", | |
...generationConfigExtra, | |
...(schema && { responseSchema: schema }), | |
}; | |
const model = genAI.getGenerativeModel({ | |
model: "gemini-1.5-flash", | |
generationConfig, | |
}); | |
// const chat = model.startChat({ history: [] }); | |
try { | |
const res = await model.generateContent(prompt); | |
// const res = await chat.sendMessage(prompt); | |
try { | |
const { recipeName } = JSON.parse(res.response.text()); | |
return recipeName; | |
} catch (e) { | |
console.error(e); | |
return e; | |
} | |
} catch (e) { | |
console.error(e); | |
return e; | |
} | |
}, | |
}; | |
/* Examples */ | |
const examples = { | |
getRecipe: async () => { | |
const schema = { | |
description: "List of recipes", | |
type: SchemaType.ARRAY, | |
items: { | |
type: SchemaType.OBJECT, | |
properties: { | |
recipeName: { | |
type: SchemaType.STRING, | |
description: "Name of the recipe", | |
nullable: false, | |
}, | |
}, | |
required: ["recipeName"], | |
}, | |
}; | |
const prompt = `List a few popular cookie recipes using this JSON schema: | |
Recipe = {'recipeName': string} | |
Return: Array<Recipe>`; | |
return await gemini.generateContent(prompt, schema); | |
}, | |
sayHelloInDanish: async () => { | |
return await gemini.generateContent("Say hello in Danish"); | |
}, | |
getEmbedding: async () => { | |
return await gemini.createEmbedding("Create an embedding of this string"); | |
}, | |
}; |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment