-
-
Save ahlusar1989/0e33e8dbb5563edf6fd3 to your computer and use it in GitHub Desktop.
AdaBoost Python implementation of the AdaBoost (Adaptive Boosting) classification algorithm.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import division | |
from numpy import * | |
class AdaBoost: | |
def __init__(self, training_set): | |
self.training_set = training_set | |
self.N = len(self.training_set) | |
self.weights = ones(self.N)/self.N | |
self.RULES = [] | |
self.ALPHA = [] | |
def set_rule(self, func, test=False): | |
errors = array([t[1]!=func(t[0]) for t in self.training_set]) | |
e = (errors*self.weights).sum() | |
if test: return e | |
alpha = 0.5 * log((1-e)/e) | |
print 'e=%.2f a=%.2f'%(e, alpha) | |
w = zeros(self.N) | |
for i in range(self.N): | |
if errors[i] == 1: w[i] = self.weights[i] * exp(alpha) | |
else: w[i] = self.weights[i] * exp(-alpha) | |
self.weights = w / w.sum() | |
self.RULES.append(func) | |
self.ALPHA.append(alpha) | |
def evaluate(self): | |
NR = len(self.RULES) | |
for (x,l) in self.training_set: | |
hx = [self.ALPHA[i]*self.RULES[i](x) for i in range(NR)] | |
print x, sign(l) == sign(sum(hx)) | |
if __name__ == '__main__': | |
examples = [] | |
examples.append(((1, 2 ), 1)) | |
examples.append(((1, 4 ), 1)) | |
examples.append(((2.5,5.5), 1)) | |
examples.append(((3.5,6.5), 1)) | |
examples.append(((4, 5.4), 1)) | |
examples.append(((2, 1 ),-1)) | |
examples.append(((2, 4 ),-1)) | |
examples.append(((3.5,3.5),-1)) | |
examples.append(((5, 2 ),-1)) | |
examples.append(((5, 5.5),-1)) | |
m = AdaBoost(examples) | |
m.set_rule(lambda x: 2*(x[0] < 1.5)-1) | |
m.set_rule(lambda x: 2*(x[0] < 4.5)-1) | |
m.set_rule(lambda x: 2*(x[1] > 5)-1) | |
m.evaluate() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment