Created
June 18, 2019 09:57
-
-
Save ahmedbilal/47ea28a2b08c91d29b7dcadd434ba230 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import keras | |
import numpy as np | |
from os.path import isfile as is_file_exists | |
from keras.models import Sequential | |
from keras.layers import Dense, Activation | |
from keras.optimizers import Adam | |
from sklearn.preprocessing import MinMaxScaler | |
from sklearn.model_selection import train_test_split | |
def get_data(filename): | |
_list = [] | |
with open(filename, "r") as f: | |
for line in f.readlines(): | |
_list.append([int(line) for line in line.split(",")]) | |
return np.array(_list) | |
def get_label(filename): | |
_list = [] | |
with open(filename, "r") as f: | |
for label in f.readlines(): | |
_list.append(int(label)) | |
return np.array(_list) | |
model = Sequential() | |
# Layers | |
model.add(Dense(24,activation='relu')) | |
model.add(Dense(7,activation='softmax')) | |
model.compile(optimizer='adam', | |
loss='categorical_crossentropy', | |
metrics=['accuracy'], | |
batch_size=16) | |
data = get_data("data.txt") | |
labels = get_label("data_labels.txt") | |
X_train, X_test, y_train, y_test = train_test_split(data, labels, | |
test_size=0.40, random_state=42) | |
training_labels = keras.utils.to_categorical(y_train, num_classes=7) | |
testing_labels = keras.utils.to_categorical(y_test, num_classes=7) | |
if not is_file_exists("trained_model"): | |
model.fit(X_train,training_labels,epochs=7) | |
model.save('trained_model') | |
else: | |
model = keras.models.load_model('trained_model') | |
test_loss, test_accuracy = model.evaluate(X_test, testing_labels) | |
print("Test Loss", test_loss) | |
print("Test Accuracy", test_accuracy) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment