Skip to content

Instantly share code, notes, and snippets.

@ahmedfgad
Created May 24, 2019 15:39
Show Gist options
  • Save ahmedfgad/e22ebcc381d81a4a7034cee8df3a77d0 to your computer and use it in GitHub Desktop.
Save ahmedfgad/e22ebcc381d81a4a7034cee8df3a77d0 to your computer and use it in GitHub Desktop.
import sklearn.neural_network
import numpy
import matplotlib.pyplot
input_data = numpy.array([[5, 1.5],
[4, 2.5],
[1.5, 2],
[2.5, 0.5],
[6, 1],
[3.5, 2],
[3, 1.5],
[3, 1]])
output_data = numpy.array([0, 0, 0, 0, 1, 1, 1, 1])
my_neural_network = sklearn.neural_network.MLPClassifier(hidden_layer_sizes=(4,2), max_iter=1000)
my_neural_network.fit(X=input_data, y=output_data)
print("Weights:", my_neural_network.coefs_)
print("Bias:", my_neural_network.intercepts_)
labels = my_neural_network.predict(X=input_data)
print("Predicted Labels:", labels)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment