Created
June 27, 2020 00:26
-
-
Save ahmedfgad/e2f55f1b3c2030f6944698b31f724948 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pygad | |
import pygad.nn | |
import pygad.gann | |
# Preparing the NumPy array of the inputs. | |
data_inputs = numpy.array([[0, 1], | |
[0, 0]]) | |
# Preparing the NumPy array of the outputs. | |
data_outputs = numpy.array([1, | |
0]) | |
def fitness_func(solution, sol_idx): | |
global GANN_instance, data_inputs, data_outputs | |
predictions = pygad.nn.predict(last_layer=GANN_instance.population_networks[sol_idx], | |
data_inputs=data_inputs) | |
correct_predictions = numpy.where(predictions == data_outputs)[0].size | |
solution_fitness = (correct_predictions/data_outputs.size)*100 | |
return solution_fitness | |
def callback_generation(ga_instance): | |
global GANN_instance, last_fitness | |
population_matrices = pygad.gann.population_as_matrices(population_networks=GANN_instance.population_networks, | |
population_vectors=ga_instance.population) | |
GANN_instance.update_population_trained_weights(population_trained_weights=population_matrices) | |
print("Generation = {generation}".format(generation=ga_instance.generations_completed)) | |
print("Fitness = {fitness}".format(fitness=ga_instance.best_solution()[1])) | |
print("Change = {change}".format(change=ga_instance.best_solution()[1] - last_fitness)) | |
last_fitness = 0 | |
def prepare_GA(GANN_instance): | |
population_vectors = pygad.gann.population_as_vectors(population_networks=GANN_instance.population_networks) | |
initial_population = population_vectors.copy() | |
num_parents_mating = 4 | |
num_generations = 500 | |
mutation_percent_genes = 5 | |
keep_parents = 1 | |
ga_instance = pygad.GA(num_generations=num_generations, | |
num_parents_mating=num_parents_mating, | |
initial_population=initial_population, | |
fitness_func=fitness_func, | |
mutation_percent_genes=mutation_percent_genes, | |
keep_parents=keep_parents, | |
callback_generation=callback_generation) | |
return ga_instance |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment