Created
July 9, 2019 14:54
-
-
Save ahmedfgad/f2856979b346210ebdf8745aedbda01c to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
package opencvapp; | |
import org.opencv.core.Core; | |
import static org.opencv.core.CvType.CV_32F; | |
import org.opencv.core.Mat; | |
import org.opencv.ml.ANN_MLP; | |
public class OpenCVLoadModel { | |
public static void main(String[] args) { | |
System.load("D:\\FCI\\Programming\\OpenCV\\OpenCV 4.1.0\\opencv-4.1.0-vc14_vc15\\opencv\\build\\java\\x64\\" + Core.NATIVE_LIBRARY_NAME + ".dll"); | |
double[][] XORTrainArray = { | |
{0.0, 0.0}, | |
{0.0, 1.0}, | |
{1.0, 0.0}, | |
{1.0, 1.0} | |
}; | |
Mat XORTrain = new Mat(4, 2, CV_32F); | |
XORTrain.put(0, 0, XORTrainArray[0]); | |
XORTrain.put(1, 0, XORTrainArray[1]); | |
XORTrain.put(2, 0, XORTrainArray[2]); | |
XORTrain.put(3, 0, XORTrainArray[3]); | |
System.out.println("Train Inputs : \n" + XORTrain.dump()); | |
double[][] XORTrainOutArray = { | |
{0.0}, | |
{1.0}, | |
{1.0}, | |
{0.0} | |
}; | |
Mat XORTrainOut = new Mat(4, 1, CV_32F); | |
XORTrainOut.put(0, 0, XORTrainOutArray[0]); | |
XORTrainOut.put(1, 0, XORTrainOutArray[1]); | |
XORTrainOut.put(2, 0, XORTrainOutArray[2]); | |
XORTrainOut.put(3, 0, XORTrainOutArray[3]); | |
System.out.println("Train Labels : \n" + XORTrainOut.dump()); | |
ANN_MLP ANN = ANN_MLP.load("C:\\Users\\Dell\\Documents\\NetBeansProjects\\OpenCVApp\\OpenCV_ANN_XOR.yml"); | |
double num_correct_predictions = 0; | |
for (int i = 0; i < XORTrain.rows(); i++) { | |
Mat sample = XORTrain.row(i); | |
double correct_label = XORTrainOut.get(i, 0)[0]; | |
Mat results = new Mat(); | |
ANN.predict(sample, results, 0); | |
double response = results.get(0, 0)[0]; | |
double predicted_label; | |
if (response >= 0.5) { | |
predicted_label = 1.0; | |
} else { | |
predicted_label = 0.0; | |
} | |
System.out.println("Input Sample : " + sample.dump() + ", Predicted Score : " + response + ", Predicted Label : " + predicted_label + ", Correct Label : " + correct_label); | |
if (predicted_label == correct_label) { | |
num_correct_predictions += 1; | |
} | |
} | |
double accuracy = (num_correct_predictions / XORTrain.rows()) * 100; | |
System.out.println("Accuracy : " + accuracy); | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment