Skip to content

Instantly share code, notes, and snippets.

@aic5
Created December 10, 2016 21:26
Show Gist options
  • Save aic5/dd4c9fba30374be072eaa82fb61dc775 to your computer and use it in GitHub Desktop.
Save aic5/dd4c9fba30374be072eaa82fb61dc775 to your computer and use it in GitHub Desktop.
distr_1.py
# coding: utf-8
import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
import console
# example data
mu = 100 # mean of distribution
sigma = 15 # standard deviation of distribution
x = mu + sigma * np.random.randn(10)
'''
num_bins = 30
# the histogram of the data
n, bins, patches = plt.hist(x, num_bins, normed=1, facecolor='green', alpha=0.5)
# add a 'best fit' line
y = mlab.normpdf(bins, mu, sigma)
plt.plot(bins, y, 'r--')
plt.xlabel('Smarts')
plt.ylabel('Probability')
plt.title(r'Histogram of IQ: $\mu=100$, $\sigma=15$')
# Tweak spacing to prevent clipping of ylabel
plt.subplots_adjust(left=0.15)
plt.show()
'''
console.clear()
print x
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment