Created
February 12, 2017 19:37
-
-
Save aicentral/483d6da8bb09337581a6635f999cca6a to your computer and use it in GitHub Desktop.
Gradient Descent
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Simple implementation for the example in page 96 in http://www.deeplearningbook.org/contents/numerical.html | |
# 4.5 Example: Linear Least Squares | |
import numpy as np | |
X=np.random.rand(2,1) | |
sigma=0.000001 | |
epslon=0.03 | |
A=np.array([[1,2],[3,4]]) | |
B=np.array([1,1]) | |
def gradient(A,X,B): | |
return np.dot(np.dot(np.transpose(A),A),X)-np.dot(np.transpose(A),B) | |
grad=gradient(A,X,B) | |
i=0 | |
print 'Iteration',i,'Current gradient=',np.linalg.norm(grad,ord=2) | |
while np.linalg.norm(grad,ord=2)>sigma: | |
i+=1 | |
if i%100==0: | |
print 'Iteration',i,'Current gradient=',np.linalg.norm(grad,ord=2) | |
X=X-epslon*grad | |
grad=gradient(A,X,B) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment