Created
July 31, 2020 20:20
-
-
Save ailzhang/18876edec4dad54e43a1db0c127c5707 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
--- before42031/VariableTypeEverything.cpp 2020-07-31 13:16:02.450902000 -0700 | |
+++ after42031/VariableTypeEverything.cpp 2020-07-31 13:06:18.799446000 -0700 | |
@@ -46,22 +46,6 @@ | |
// Later when we merge the mobile op registration the anonymous namespace | |
// will be restored. | |
// namespace { | |
-Tensor __and___Scalar(const Tensor & self, Scalar other) { | |
- auto result = TypeDefault::__and___Scalar(self, other); | |
- return result; | |
-} | |
-Tensor __and___Tensor(const Tensor & self, const Tensor & other) { | |
- auto result = TypeDefault::__and___Tensor(self, other); | |
- return result; | |
-} | |
-Tensor & __iand___Scalar(Tensor & self, Scalar other) { | |
- TypeDefault::__iand___Scalar(self, other); | |
- return self; | |
-} | |
-Tensor & __iand___Tensor(Tensor & self, const Tensor & other) { | |
- TypeDefault::__iand___Tensor(self, other); | |
- return self; | |
-} | |
Tensor & __ilshift___Scalar(Tensor & self, Scalar other) { | |
auto& self_ = unpack(self, "self", 0); | |
#ifndef NDEBUG | |
@@ -110,14 +94,6 @@ | |
increment_version(self); | |
return self; | |
} | |
-Tensor & __ior___Scalar(Tensor & self, Scalar other) { | |
- TypeDefault::__ior___Scalar(self, other); | |
- return self; | |
-} | |
-Tensor & __ior___Tensor(Tensor & self, const Tensor & other) { | |
- TypeDefault::__ior___Tensor(self, other); | |
- return self; | |
-} | |
Tensor & __irshift___Scalar(Tensor & self, Scalar other) { | |
auto& self_ = unpack(self, "self", 0); | |
#ifndef NDEBUG | |
@@ -166,14 +142,6 @@ | |
increment_version(self); | |
return self; | |
} | |
-Tensor & __ixor___Scalar(Tensor & self, Scalar other) { | |
- TypeDefault::__ixor___Scalar(self, other); | |
- return self; | |
-} | |
-Tensor & __ixor___Tensor(Tensor & self, const Tensor & other) { | |
- TypeDefault::__ixor___Tensor(self, other); | |
- return self; | |
-} | |
Tensor __lshift___Scalar(const Tensor & self, Scalar other) { | |
auto& self_ = unpack(self, "self", 0); | |
#ifndef NDEBUG | |
@@ -222,14 +190,6 @@ | |
#endif | |
return result; | |
} | |
-Tensor __or___Scalar(const Tensor & self, Scalar other) { | |
- auto result = TypeDefault::__or___Scalar(self, other); | |
- return result; | |
-} | |
-Tensor __or___Tensor(const Tensor & self, const Tensor & other) { | |
- auto result = TypeDefault::__or___Tensor(self, other); | |
- return result; | |
-} | |
Tensor __rshift___Scalar(const Tensor & self, Scalar other) { | |
auto& self_ = unpack(self, "self", 0); | |
#ifndef NDEBUG | |
@@ -278,14 +238,6 @@ | |
#endif | |
return result; | |
} | |
-Tensor __xor___Scalar(const Tensor & self, Scalar other) { | |
- auto result = TypeDefault::__xor___Scalar(self, other); | |
- return result; | |
-} | |
-Tensor __xor___Tensor(const Tensor & self, const Tensor & other) { | |
- auto result = TypeDefault::__xor___Tensor(self, other); | |
- return result; | |
-} | |
Tensor _adaptive_avg_pool2d(const Tensor & self, IntArrayRef output_size) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<AdaptiveAvgPool2DBackward> grad_fn; | |
@@ -353,10 +305,6 @@ | |
} | |
return result; | |
} | |
-Tensor _add_batch_dim(const Tensor & self, int64_t batch_dim, int64_t level) { | |
- auto result = TypeDefault::_add_batch_dim(self, batch_dim, level); | |
- return result; | |
-} | |
Tensor & _addmv_impl_(Tensor & self, const Tensor & self2, const Tensor & mat, const Tensor & vec, Scalar beta, Scalar alpha) { | |
auto& self_ = unpack(self, "self", 0); | |
auto& self2_ = unpack(self2, "self2", 1); | |
@@ -631,26 +579,6 @@ | |
} | |
return result; | |
} | |
-Tensor & _baddbmm_mkl_(Tensor & self, const Tensor & batch1, const Tensor & batch2, Scalar beta, Scalar alpha) { | |
- TypeDefault::_baddbmm_mkl_(self, batch1, batch2, beta, alpha); | |
- return self; | |
-} | |
-std::tuple<Tensor,Tensor,Tensor,Tensor,int64_t> _batch_norm_impl_index(const Tensor & input, const Tensor & weight, const Tensor & bias, const Tensor & running_mean, const Tensor & running_var, bool training, double momentum, double eps, bool cudnn_enabled) { | |
- Tensor result0; | |
- Tensor result1; | |
- Tensor result2; | |
- Tensor result3; | |
- int64_t result4; | |
- std::tie(result0, result1, result2, result3, result4) = TypeDefault::_batch_norm_impl_index(input, weight, bias, running_mean, running_var, training, momentum, eps, cudnn_enabled); | |
- return std::make_tuple(std::move(result0), std::move(result1), std::move(result2), std::move(result3), std::move(result4)); | |
-} | |
-std::tuple<Tensor,Tensor,Tensor> _batch_norm_impl_index_backward(int64_t impl_index, const Tensor & input, const Tensor & grad_output, const Tensor & weight, const Tensor & running_mean, const Tensor & running_var, const Tensor & save_mean, const Tensor & save_var_transform, bool train, double eps, std::array<bool,3> output_mask, const Tensor & reservedSpace) { | |
- Tensor result0; | |
- Tensor result1; | |
- Tensor result2; | |
- std::tie(result0, result1, result2) = TypeDefault::_batch_norm_impl_index_backward(impl_index, input, grad_output, weight, running_mean, running_var, save_mean, save_var_transform, train, eps, output_mask, reservedSpace); | |
- return std::make_tuple(std::move(result0), std::move(result1), std::move(result2)); | |
-} | |
Tensor _bmm(const Tensor & self, const Tensor & mat2, bool deterministic) { | |
auto& self_ = unpack(self, "self", 0); | |
auto& mat2_ = unpack(mat2, "mat2", 1); | |
@@ -740,38 +668,6 @@ | |
} | |
return out; | |
} | |
-Tensor _cast_Byte(const Tensor & self, bool non_blocking) { | |
- auto result = TypeDefault::_cast_Byte(self, non_blocking); | |
- return result; | |
-} | |
-Tensor _cast_Char(const Tensor & self, bool non_blocking) { | |
- auto result = TypeDefault::_cast_Char(self, non_blocking); | |
- return result; | |
-} | |
-Tensor _cast_Double(const Tensor & self, bool non_blocking) { | |
- auto result = TypeDefault::_cast_Double(self, non_blocking); | |
- return result; | |
-} | |
-Tensor _cast_Float(const Tensor & self, bool non_blocking) { | |
- auto result = TypeDefault::_cast_Float(self, non_blocking); | |
- return result; | |
-} | |
-Tensor _cast_Half(const Tensor & self, bool non_blocking) { | |
- auto result = TypeDefault::_cast_Half(self, non_blocking); | |
- return result; | |
-} | |
-Tensor _cast_Int(const Tensor & self, bool non_blocking) { | |
- auto result = TypeDefault::_cast_Int(self, non_blocking); | |
- return result; | |
-} | |
-Tensor _cast_Long(const Tensor & self, bool non_blocking) { | |
- auto result = TypeDefault::_cast_Long(self, non_blocking); | |
- return result; | |
-} | |
-Tensor _cast_Short(const Tensor & self, bool non_blocking) { | |
- auto result = TypeDefault::_cast_Short(self, non_blocking); | |
- return result; | |
-} | |
Tensor _cat(TensorList tensors, int64_t dim) { | |
auto tensors_ = unpack(tensors, "tensors", 0); | |
std::shared_ptr<NotImplemented> grad_fn; | |
@@ -1012,12 +908,6 @@ | |
} | |
return result; | |
} | |
-std::tuple<double,int64_t> _choose_qparams_per_tensor(const Tensor & self, bool reduce_range) { | |
- double result0; | |
- int64_t result1; | |
- std::tie(result0, result1) = TypeDefault::_choose_qparams_per_tensor(self, reduce_range); | |
- return std::make_tuple(std::move(result0), std::move(result1)); | |
-} | |
Tensor & _coalesced_(Tensor & self, bool coalesced) { | |
auto& self_ = unpack(self, "self", 0); | |
#ifndef NDEBUG | |
@@ -1038,21 +928,6 @@ | |
increment_version(self); | |
return self; | |
} | |
-Tensor _convolution(const Tensor & input, const Tensor & weight, const Tensor & bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool transposed, IntArrayRef output_padding, int64_t groups, bool benchmark, bool deterministic, bool cudnn_enabled) { | |
- auto result = TypeDefault::_convolution(input, weight, bias, stride, padding, dilation, transposed, output_padding, groups, benchmark, deterministic, cudnn_enabled); | |
- return result; | |
-} | |
-std::tuple<Tensor,Tensor,Tensor> _convolution_double_backward(const Tensor & ggI, const Tensor & ggW, const Tensor & ggb, const Tensor & gO, const Tensor & weight, const Tensor & self, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool transposed, IntArrayRef output_padding, int64_t groups, bool benchmark, bool deterministic, bool cudnn_enabled, std::array<bool,3> output_mask) { | |
- Tensor result0; | |
- Tensor result1; | |
- Tensor result2; | |
- std::tie(result0, result1, result2) = TypeDefault::_convolution_double_backward(ggI, ggW, ggb, gO, weight, self, stride, padding, dilation, transposed, output_padding, groups, benchmark, deterministic, cudnn_enabled, output_mask); | |
- return std::make_tuple(std::move(result0), std::move(result1), std::move(result2)); | |
-} | |
-Tensor _convolution_nogroup(const Tensor & input, const Tensor & weight, const Tensor & bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool transposed, IntArrayRef output_padding) { | |
- auto result = TypeDefault::_convolution_nogroup(input, weight, bias, stride, padding, dilation, transposed, output_padding); | |
- return result; | |
-} | |
Tensor _copy_from(const Tensor & self, const Tensor & dst, bool non_blocking) { | |
auto& self_ = unpack(self, "self", 0); | |
auto& dst_ = unpack(dst, "dst", 1); | |
@@ -1490,20 +1365,6 @@ | |
} | |
return result; | |
} | |
-void _cufft_clear_plan_cache(int64_t device_index) { | |
- TypeDefault::_cufft_clear_plan_cache(device_index); | |
-} | |
-int64_t _cufft_get_plan_cache_max_size(int64_t device_index) { | |
- auto result = TypeDefault::_cufft_get_plan_cache_max_size(device_index); | |
- return result; | |
-} | |
-int64_t _cufft_get_plan_cache_size(int64_t device_index) { | |
- auto result = TypeDefault::_cufft_get_plan_cache_size(device_index); | |
- return result; | |
-} | |
-void _cufft_set_plan_cache_max_size(int64_t device_index, int64_t max_size) { | |
- TypeDefault::_cufft_set_plan_cache_max_size(device_index, max_size); | |
-} | |
void _cummax_helper(const Tensor & self, Tensor & values, Tensor & indices, int64_t dim) { | |
auto& self_ = unpack(self, "self", 0); | |
auto& values_ = unpack(values, "values", 1); | |
@@ -1704,10 +1565,6 @@ | |
} | |
return out; | |
} | |
-int64_t _debug_has_internal_overlap(const Tensor & self) { | |
- auto result = TypeDefault::_debug_has_internal_overlap(self); | |
- return result; | |
-} | |
int64_t _dimI(const Tensor & self) { | |
auto& self_ = unpack(self, "self", 0); | |
#ifndef NDEBUG | |
@@ -1748,10 +1605,6 @@ | |
#endif | |
return result; | |
} | |
-Tensor _dim_arange(const Tensor & like, int64_t dim) { | |
- auto result = TypeDefault::_dim_arange(like, dim); | |
- return result; | |
-} | |
Tensor _dirichlet_grad(const Tensor & x, const Tensor & alpha, const Tensor & total) { | |
auto& x_ = unpack(x, "x", 0); | |
auto& alpha_ = unpack(alpha, "alpha", 1); | |
@@ -1869,10 +1722,6 @@ | |
} | |
return std::make_tuple(std::move(result0), std::move(result1), std::move(result2), std::move(result3)); | |
} | |
-Tensor _embedding_bag_backward(const Tensor & grad, const Tensor & indices, const Tensor & offsets, const Tensor & offset2bag, const Tensor & bag_size, const Tensor & maximum_indices, int64_t num_weights, bool scale_grad_by_freq, int64_t mode, bool sparse, const Tensor & per_sample_weights) { | |
- auto result = TypeDefault::_embedding_bag_backward(grad, indices, offsets, offset2bag, bag_size, maximum_indices, num_weights, scale_grad_by_freq, mode, sparse, per_sample_weights); | |
- return result; | |
-} | |
Tensor _embedding_bag_dense_backward(const Tensor & grad, const Tensor & indices, const Tensor & offsets, const Tensor & offset2bag, const Tensor & bag_size, const Tensor & maximum_indices, int64_t num_weights, bool scale_grad_by_freq, int64_t mode, const Tensor & per_sample_weights) { | |
auto& grad_ = unpack(grad, "grad", 0); | |
auto& indices_ = unpack(indices, "indices", 1); | |
@@ -2065,10 +1914,6 @@ | |
} | |
return result; | |
} | |
-Tensor _embedding_bag_sparse_backward(const Tensor & grad, const Tensor & indices, const Tensor & offsets, const Tensor & offset2bag, const Tensor & bag_size, int64_t num_weights, bool scale_grad_by_freq, int64_t mode, const Tensor & per_sample_weights) { | |
- auto result = TypeDefault::_embedding_bag_sparse_backward(grad, indices, offsets, offset2bag, bag_size, num_weights, scale_grad_by_freq, mode, per_sample_weights); | |
- return result; | |
-} | |
Tensor _empty_affine_quantized(IntArrayRef size, const TensorOptions & options, double scale, int64_t zero_point, c10::optional<MemoryFormat> memory_format) { | |
auto options_ = TensorOptions(options); | |
auto tmp = ([&]() { | |
@@ -2206,13 +2051,6 @@ | |
} | |
return result; | |
} | |
-std::tuple<Tensor,Tensor,Tensor> _fake_quantize_learnable_per_channel_affine_backward(const Tensor & grad, const Tensor & self, const Tensor & scale, const Tensor & zero_point, int64_t axis, int64_t quant_min, int64_t quant_max) { | |
- Tensor result0; | |
- Tensor result1; | |
- Tensor result2; | |
- std::tie(result0, result1, result2) = TypeDefault::_fake_quantize_learnable_per_channel_affine_backward(grad, self, scale, zero_point, axis, quant_min, quant_max); | |
- return std::make_tuple(std::move(result0), std::move(result1), std::move(result2)); | |
-} | |
Tensor _fake_quantize_learnable_per_tensor_affine(const Tensor & self, const Tensor & scale, const Tensor & zero_point, int64_t quant_min, int64_t quant_max) { | |
auto& self_ = unpack(self, "self", 0); | |
auto& scale_ = unpack(scale, "scale", 1); | |
@@ -2262,13 +2100,6 @@ | |
} | |
return result; | |
} | |
-std::tuple<Tensor,Tensor,Tensor> _fake_quantize_learnable_per_tensor_affine_backward(const Tensor & grad, const Tensor & self, const Tensor & scale, const Tensor & zero_point, int64_t quant_min, int64_t quant_max) { | |
- Tensor result0; | |
- Tensor result1; | |
- Tensor result2; | |
- std::tie(result0, result1, result2) = TypeDefault::_fake_quantize_learnable_per_tensor_affine_backward(grad, self, scale, zero_point, quant_min, quant_max); | |
- return std::make_tuple(std::move(result0), std::move(result1), std::move(result2)); | |
-} | |
Tensor _fft_with_size(const Tensor & self, int64_t signal_ndim, bool complex_input, bool complex_output, bool inverse, IntArrayRef checked_signal_sizes, bool normalized, bool onesided, IntArrayRef output_sizes) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<FftWithSizeBackward> grad_fn; | |
@@ -2340,14 +2171,6 @@ | |
} | |
return std::make_tuple(std::move(result0), std::move(result1)); | |
} | |
-Tensor _gather_sparse_backward(const Tensor & self, int64_t dim, const Tensor & index, const Tensor & grad) { | |
- auto result = TypeDefault::_gather_sparse_backward(self, dim, index, grad); | |
- return result; | |
-} | |
-bool _has_compatible_shallow_copy_type(const Tensor & self, const Tensor & from) { | |
- auto result = TypeDefault::_has_compatible_shallow_copy_type(self, from); | |
- return result; | |
-} | |
Tensor & _index_copy_(Tensor & self, int64_t dim, const Tensor & index, const Tensor & source) { | |
auto& self_ = unpack(self, "self", 0); | |
auto& index_ = unpack(index, "index", 2); | |
@@ -3106,10 +2929,6 @@ | |
} | |
return std::make_tuple(std::move(result0), std::move(result1)); | |
} | |
-bool _nnpack_available() { | |
- auto result = TypeDefault::_nnpack_available(); | |
- return result; | |
-} | |
Tensor _nnpack_spatial_convolution(const Tensor & input, const Tensor & weight, const Tensor & bias, IntArrayRef padding, IntArrayRef stride) { | |
auto& input_ = unpack(input, "input", 0); | |
auto& weight_ = unpack(weight, "weight", 1); | |
@@ -3160,21 +2979,6 @@ | |
} | |
return result; | |
} | |
-std::tuple<Tensor,Tensor,Tensor> _nnpack_spatial_convolution_backward(const Tensor & input, const Tensor & grad_output, const Tensor & weight, IntArrayRef padding, std::array<bool,3> output_mask) { | |
- Tensor result0; | |
- Tensor result1; | |
- Tensor result2; | |
- std::tie(result0, result1, result2) = TypeDefault::_nnpack_spatial_convolution_backward(input, grad_output, weight, padding, output_mask); | |
- return std::make_tuple(std::move(result0), std::move(result1), std::move(result2)); | |
-} | |
-Tensor _nnpack_spatial_convolution_backward_input(const Tensor & input, const Tensor & grad_output, const Tensor & weight, IntArrayRef padding) { | |
- auto result = TypeDefault::_nnpack_spatial_convolution_backward_input(input, grad_output, weight, padding); | |
- return result; | |
-} | |
-Tensor _nnpack_spatial_convolution_backward_weight(const Tensor & input, IntArrayRef weightsize, const Tensor & grad_output, IntArrayRef padding) { | |
- auto result = TypeDefault::_nnpack_spatial_convolution_backward_weight(input, weightsize, grad_output, padding); | |
- return result; | |
-} | |
int64_t _nnz(const Tensor & self) { | |
auto& self_ = unpack(self, "self", 0); | |
#ifndef NDEBUG | |
@@ -3239,16 +3043,6 @@ | |
} | |
return std::make_tuple(std::move(result0), std::move(result1)); | |
} | |
-Tensor _pack_padded_sequence_backward(const Tensor & grad, IntArrayRef input_size, const Tensor & batch_sizes, bool batch_first) { | |
- auto result = TypeDefault::_pack_padded_sequence_backward(grad, input_size, batch_sizes, batch_first); | |
- return result; | |
-} | |
-std::tuple<Tensor,Tensor> _pad_packed_sequence(const Tensor & data, const Tensor & batch_sizes, bool batch_first, Scalar padding_value, int64_t total_length) { | |
- Tensor result0; | |
- Tensor result1; | |
- std::tie(result0, result1) = TypeDefault::_pad_packed_sequence(data, batch_sizes, batch_first, padding_value, total_length); | |
- return std::make_tuple(std::move(result0), std::move(result1)); | |
-} | |
Tensor _pdist_backward(const Tensor & grad, const Tensor & self, double p, const Tensor & pdist) { | |
auto& grad_ = unpack(grad, "grad", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -3356,14 +3150,6 @@ | |
} | |
return std::make_tuple(std::move(result0), std::move(result1)); | |
} | |
-Tensor _remove_batch_dim(const Tensor & self, int64_t level, int64_t batch_size, int64_t out_dim) { | |
- auto result = TypeDefault::_remove_batch_dim(self, level, batch_size, out_dim); | |
- return result; | |
-} | |
-Tensor _reshape_from_tensor(const Tensor & self, const Tensor & shape) { | |
- auto result = TypeDefault::_reshape_from_tensor(self, shape); | |
- return result; | |
-} | |
Tensor _s_where(const Tensor & condition, const Tensor & self, const Tensor & other) { | |
auto& condition_ = unpack(condition, "condition", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -3437,28 +3223,6 @@ | |
} | |
return result; | |
} | |
-Tensor _shape_as_tensor(const Tensor & self) { | |
- auto result = TypeDefault::_shape_as_tensor(self); | |
- return result; | |
-} | |
-std::tuple<Tensor,Tensor> _sobol_engine_draw(const Tensor & quasi, int64_t n, const Tensor & sobolstate, int64_t dimension, int64_t num_generated, c10::optional<ScalarType> dtype) { | |
- Tensor result0; | |
- Tensor result1; | |
- std::tie(result0, result1) = TypeDefault::_sobol_engine_draw(quasi, n, sobolstate, dimension, num_generated, dtype); | |
- return std::make_tuple(std::move(result0), std::move(result1)); | |
-} | |
-Tensor & _sobol_engine_ff_(Tensor & self, int64_t n, const Tensor & sobolstate, int64_t dimension, int64_t num_generated) { | |
- TypeDefault::_sobol_engine_ff_(self, n, sobolstate, dimension, num_generated); | |
- return self; | |
-} | |
-Tensor & _sobol_engine_initialize_state_(Tensor & self, int64_t dimension) { | |
- TypeDefault::_sobol_engine_initialize_state_(self, dimension); | |
- return self; | |
-} | |
-Tensor & _sobol_engine_scramble_(Tensor & self, const Tensor & ltm, int64_t dimension) { | |
- TypeDefault::_sobol_engine_scramble_(self, ltm, dimension); | |
- return self; | |
-} | |
Tensor _softmax(const Tensor & self, int64_t dim, bool half_to_float) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<SoftmaxBackward> grad_fn; | |
@@ -3627,10 +3391,6 @@ | |
} | |
return result; | |
} | |
-Tensor _sparse_coo_tensor_unsafe(const Tensor & indices, const Tensor & values, IntArrayRef size, const TensorOptions & options) { | |
- auto result = TypeDefault::_sparse_coo_tensor_unsafe(indices, values, size, options); | |
- return result; | |
-} | |
Tensor _sparse_coo_tensor_with_dims(int64_t sparse_dim, int64_t dense_dim, IntArrayRef size, const TensorOptions & options) { | |
auto options_ = TensorOptions(options); | |
auto tmp = ([&]() { | |
@@ -3680,14 +3440,6 @@ | |
} | |
return result; | |
} | |
-Tensor _sparse_log_softmax_int(const Tensor & self, int64_t dim, c10::optional<ScalarType> dtype) { | |
- auto result = TypeDefault::_sparse_log_softmax_int(self, dim, dtype); | |
- return result; | |
-} | |
-Tensor _sparse_log_softmax_Dimname(const Tensor & self, Dimname dim, c10::optional<ScalarType> dtype) { | |
- auto result = TypeDefault::_sparse_log_softmax_Dimname(self, dim, dtype); | |
- return result; | |
-} | |
Tensor _sparse_log_softmax(const Tensor & self, int64_t dim, bool half_to_float) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<SparseLogSoftmaxBackward> grad_fn; | |
@@ -3765,18 +3517,6 @@ | |
} | |
return result; | |
} | |
-Tensor _sparse_mm(const Tensor & sparse, const Tensor & dense) { | |
- auto result = TypeDefault::_sparse_mm(sparse, dense); | |
- return result; | |
-} | |
-Tensor _sparse_softmax_int(const Tensor & self, int64_t dim, c10::optional<ScalarType> dtype) { | |
- auto result = TypeDefault::_sparse_softmax_int(self, dim, dtype); | |
- return result; | |
-} | |
-Tensor _sparse_softmax_Dimname(const Tensor & self, Dimname dim, c10::optional<ScalarType> dtype) { | |
- auto result = TypeDefault::_sparse_softmax_Dimname(self, dim, dtype); | |
- return result; | |
-} | |
Tensor _sparse_softmax(const Tensor & self, int64_t dim, bool half_to_float) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<SparseSoftmaxBackward> grad_fn; | |
@@ -3854,14 +3594,6 @@ | |
} | |
return result; | |
} | |
-Tensor _sparse_sum(const Tensor & self) { | |
- auto result = TypeDefault::_sparse_sum(self); | |
- return result; | |
-} | |
-Tensor _sparse_sum_dtype(const Tensor & self, ScalarType dtype) { | |
- auto result = TypeDefault::_sparse_sum_dtype(self, dtype); | |
- return result; | |
-} | |
Tensor _sparse_sum_dim(const Tensor & self, IntArrayRef dim) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<SparseSumBackward> grad_fn; | |
@@ -3892,10 +3624,6 @@ | |
} | |
return result; | |
} | |
-Tensor _sparse_sum_dim_dtype(const Tensor & self, IntArrayRef dim, ScalarType dtype) { | |
- auto result = TypeDefault::_sparse_sum_dim_dtype(self, dim, dtype); | |
- return result; | |
-} | |
Tensor _sparse_sum_backward(const Tensor & grad, const Tensor & self, IntArrayRef dim) { | |
auto& grad_ = unpack(grad, "grad", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -4145,28 +3873,6 @@ | |
} | |
return result; | |
} | |
-Tensor _test_serialization_subcmul(const Tensor & self, const Tensor & other, Scalar alpha) { | |
- auto result = TypeDefault::_test_serialization_subcmul(self, other, alpha); | |
- return result; | |
-} | |
-std::tuple<Tensor,Tensor,Tensor,Tensor,Tensor> _thnn_differentiable_gru_cell_backward(const Tensor & grad_hy, const Tensor & input_gates, const Tensor & hidden_gates, const Tensor & hx, const Tensor & input_bias, const Tensor & hidden_bias) { | |
- Tensor result0; | |
- Tensor result1; | |
- Tensor result2; | |
- Tensor result3; | |
- Tensor result4; | |
- std::tie(result0, result1, result2, result3, result4) = TypeDefault::_thnn_differentiable_gru_cell_backward(grad_hy, input_gates, hidden_gates, hx, input_bias, hidden_bias); | |
- return std::make_tuple(std::move(result0), std::move(result1), std::move(result2), std::move(result3), std::move(result4)); | |
-} | |
-std::tuple<Tensor,Tensor,Tensor,Tensor,Tensor> _thnn_differentiable_lstm_cell_backward(const Tensor & grad_hy, const Tensor & grad_cy, const Tensor & input_gates, const Tensor & hidden_gates, const Tensor & input_bias, const Tensor & hidden_bias, const Tensor & cx, const Tensor & cy) { | |
- Tensor result0; | |
- Tensor result1; | |
- Tensor result2; | |
- Tensor result3; | |
- Tensor result4; | |
- std::tie(result0, result1, result2, result3, result4) = TypeDefault::_thnn_differentiable_lstm_cell_backward(grad_hy, grad_cy, input_gates, hidden_gates, input_bias, hidden_bias, cx, cy); | |
- return std::make_tuple(std::move(result0), std::move(result1), std::move(result2), std::move(result3), std::move(result4)); | |
-} | |
std::tuple<Tensor,Tensor> _thnn_fused_gru_cell(const Tensor & input_gates, const Tensor & hidden_gates, const Tensor & hx, const Tensor & input_bias, const Tensor & hidden_bias) { | |
auto& input_gates_ = unpack(input_gates, "input_gates", 0); | |
auto& hidden_gates_ = unpack(hidden_gates, "hidden_gates", 1); | |
@@ -4623,13 +4329,6 @@ | |
#endif | |
return result; | |
} | |
-bool _use_cudnn_rnn_flatten_weight() { | |
- auto result = TypeDefault::_use_cudnn_rnn_flatten_weight(); | |
- return result; | |
-} | |
-void _validate_sparse_coo_tensor_args(const Tensor & indices, const Tensor & values, IntArrayRef size) { | |
- TypeDefault::_validate_sparse_coo_tensor_args(indices, values, size); | |
-} | |
Tensor _values(const Tensor & self) { | |
auto& self_ = unpack(self, "self", 0); | |
#ifndef NDEBUG | |
@@ -4678,10 +4377,6 @@ | |
} | |
return result; | |
} | |
-Tensor _weight_norm(const Tensor & v, const Tensor & g, int64_t dim) { | |
- auto result = TypeDefault::_weight_norm(v, g, dim); | |
- return result; | |
-} | |
std::tuple<Tensor,Tensor> _weight_norm_cuda_interface(const Tensor & v, const Tensor & g, int64_t dim) { | |
auto& v_ = unpack(v, "v", 0); | |
auto& g_ = unpack(g, "g", 1); | |
@@ -4780,12 +4475,6 @@ | |
} | |
return std::make_tuple(std::move(result0), std::move(result1)); | |
} | |
-std::tuple<Tensor,Tensor> _weight_norm_differentiable_backward(const Tensor & grad_w, const Tensor & saved_v, const Tensor & saved_g, const Tensor & saved_norms, int64_t dim) { | |
- Tensor result0; | |
- Tensor result1; | |
- std::tie(result0, result1) = TypeDefault::_weight_norm_differentiable_backward(grad_w, saved_v, saved_g, saved_norms, dim); | |
- return std::make_tuple(std::move(result0), std::move(result1)); | |
-} | |
Tensor abs(const Tensor & self) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<AbsBackward> grad_fn; | |
@@ -5173,14 +4862,6 @@ | |
} | |
return out; | |
} | |
-Tensor adaptive_avg_pool1d(const Tensor & self, IntArrayRef output_size) { | |
- auto result = TypeDefault::adaptive_avg_pool1d(self, output_size); | |
- return result; | |
-} | |
-Tensor adaptive_avg_pool2d(const Tensor & self, IntArrayRef output_size) { | |
- auto result = TypeDefault::adaptive_avg_pool2d(self, output_size); | |
- return result; | |
-} | |
Tensor & adaptive_avg_pool2d_out_out(Tensor & out, const Tensor & self, IntArrayRef output_size) { | |
auto& out_ = unpack(out, "out", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -5370,12 +5051,6 @@ | |
} | |
return out; | |
} | |
-std::tuple<Tensor,Tensor> adaptive_max_pool1d(const Tensor & self, IntArrayRef output_size) { | |
- Tensor result0; | |
- Tensor result1; | |
- std::tie(result0, result1) = TypeDefault::adaptive_max_pool1d(self, output_size); | |
- return std::make_tuple(std::move(result0), std::move(result1)); | |
-} | |
std::tuple<Tensor,Tensor> adaptive_max_pool2d(const Tensor & self, IntArrayRef output_size) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<AdaptiveMaxPool2DBackward> grad_fn; | |
@@ -7013,10 +6688,6 @@ | |
} | |
return result; | |
} | |
-Tensor affine_grid_generator_backward(const Tensor & grad, IntArrayRef size, bool align_corners) { | |
- auto result = TypeDefault::affine_grid_generator_backward(grad, size, align_corners); | |
- return result; | |
-} | |
Tensor alias(const Tensor & self) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<AliasBackward> grad_fn; | |
@@ -7051,22 +6722,6 @@ | |
} | |
return result; | |
} | |
-Tensor align_as(const Tensor & self, const Tensor & other) { | |
- auto result = TypeDefault::align_as(self, other); | |
- return result; | |
-} | |
-std::vector<Tensor> align_tensors(TensorList tensors) { | |
- auto result = TypeDefault::align_tensors(tensors); | |
- return result; | |
-} | |
-Tensor align_to(const Tensor & self, DimnameList names) { | |
- auto result = TypeDefault::align_to(self, names); | |
- return result; | |
-} | |
-Tensor align_to_ellipsis_idx(const Tensor & self, DimnameList order, int64_t ellipsis_idx) { | |
- auto result = TypeDefault::align_to_ellipsis_idx(self, order, ellipsis_idx); | |
- return result; | |
-} | |
Tensor all_dim(const Tensor & self, int64_t dim, bool keepdim) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<AllBackward1> grad_fn; | |
@@ -7095,10 +6750,6 @@ | |
} | |
return result; | |
} | |
-Tensor all_dimname(const Tensor & self, Dimname dim, bool keepdim) { | |
- auto result = TypeDefault::all_dimname(self, dim, keepdim); | |
- return result; | |
-} | |
Tensor all(const Tensor & self) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<AllBackward0> grad_fn; | |
@@ -7165,22 +6816,6 @@ | |
} | |
return out; | |
} | |
-Tensor & all_out_dimname_out(Tensor & out, const Tensor & self, Dimname dim, bool keepdim) { | |
- TypeDefault::all_out_dimname_out(out, self, dim, keepdim); | |
- return out; | |
-} | |
-bool allclose(const Tensor & self, const Tensor & other, double rtol, double atol, bool equal_nan) { | |
- auto result = TypeDefault::allclose(self, other, rtol, atol, equal_nan); | |
- return result; | |
-} | |
-Tensor alpha_dropout(const Tensor & input, double p, bool train) { | |
- auto result = TypeDefault::alpha_dropout(input, p, train); | |
- return result; | |
-} | |
-Tensor & alpha_dropout_(Tensor & self, double p, bool train) { | |
- TypeDefault::alpha_dropout_(self, p, train); | |
- return self; | |
-} | |
Tensor angle(const Tensor & self) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<AngleBackward> grad_fn; | |
@@ -7277,10 +6912,6 @@ | |
} | |
return result; | |
} | |
-Tensor any_dimname(const Tensor & self, Dimname dim, bool keepdim) { | |
- auto result = TypeDefault::any_dimname(self, dim, keepdim); | |
- return result; | |
-} | |
Tensor any(const Tensor & self) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<AnyBackward0> grad_fn; | |
@@ -7347,26 +6978,6 @@ | |
} | |
return out; | |
} | |
-Tensor & any_out_dimname_out(Tensor & out, const Tensor & self, Dimname dim, bool keepdim) { | |
- TypeDefault::any_out_dimname_out(out, self, dim, keepdim); | |
- return out; | |
-} | |
-Tensor arange(Scalar end, const TensorOptions & options) { | |
- auto result = TypeDefault::arange(end, options); | |
- return result; | |
-} | |
-Tensor arange_start(Scalar start, Scalar end, const TensorOptions & options) { | |
- auto result = TypeDefault::arange_start(start, end, options); | |
- return result; | |
-} | |
-Tensor arange_start_step(Scalar start, Scalar end, Scalar step, const TensorOptions & options) { | |
- auto result = TypeDefault::arange_start_step(start, end, step, options); | |
- return result; | |
-} | |
-Tensor & arange_out_out(Tensor & out, Scalar end) { | |
- TypeDefault::arange_out_out(out, end); | |
- return out; | |
-} | |
Tensor & arange_out_start_out(Tensor & out, Scalar start, Scalar end, Scalar step) { | |
auto& out_ = unpack(out, "out", 0); | |
#ifndef NDEBUG | |
@@ -7427,14 +7038,6 @@ | |
#endif | |
return result; | |
} | |
-Tensor argsort(const Tensor & self, int64_t dim, bool descending) { | |
- auto result = TypeDefault::argsort(self, dim, descending); | |
- return result; | |
-} | |
-Tensor argsort_dimname(const Tensor & self, Dimname dim, bool descending) { | |
- auto result = TypeDefault::argsort_dimname(self, dim, descending); | |
- return result; | |
-} | |
Tensor as_strided(const Tensor & self, IntArrayRef size, IntArrayRef stride, c10::optional<int64_t> storage_offset) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<AsStridedBackward> grad_fn; | |
@@ -8018,34 +7621,6 @@ | |
} | |
return out; | |
} | |
-Tensor atleast_1d(const Tensor & self) { | |
- auto result = TypeDefault::atleast_1d(self); | |
- return result; | |
-} | |
-std::vector<Tensor> atleast_1d_Sequence(TensorList tensors) { | |
- auto result = TypeDefault::atleast_1d_Sequence(tensors); | |
- return result; | |
-} | |
-Tensor atleast_2d(const Tensor & self) { | |
- auto result = TypeDefault::atleast_2d(self); | |
- return result; | |
-} | |
-std::vector<Tensor> atleast_2d_Sequence(TensorList tensors) { | |
- auto result = TypeDefault::atleast_2d_Sequence(tensors); | |
- return result; | |
-} | |
-Tensor atleast_3d(const Tensor & self) { | |
- auto result = TypeDefault::atleast_3d(self); | |
- return result; | |
-} | |
-std::vector<Tensor> atleast_3d_Sequence(TensorList tensors) { | |
- auto result = TypeDefault::atleast_3d_Sequence(tensors); | |
- return result; | |
-} | |
-Tensor avg_pool1d(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, bool ceil_mode, bool count_include_pad) { | |
- auto result = TypeDefault::avg_pool1d(self, kernel_size, stride, padding, ceil_mode, count_include_pad); | |
- return result; | |
-} | |
Tensor avg_pool2d(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, bool ceil_mode, bool count_include_pad, c10::optional<int64_t> divisor_override) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<AvgPool2DBackward> grad_fn; | |
@@ -8529,18 +8104,6 @@ | |
} | |
return out; | |
} | |
-Tensor bartlett_window(int64_t window_length, const TensorOptions & options) { | |
- auto result = TypeDefault::bartlett_window(window_length, options); | |
- return result; | |
-} | |
-Tensor bartlett_window_periodic(int64_t window_length, bool periodic, const TensorOptions & options) { | |
- auto result = TypeDefault::bartlett_window_periodic(window_length, periodic, options); | |
- return result; | |
-} | |
-Tensor batch_norm(const Tensor & input, const Tensor & weight, const Tensor & bias, const Tensor & running_mean, const Tensor & running_var, bool training, double momentum, double eps, bool cudnn_enabled) { | |
- auto result = TypeDefault::batch_norm(input, weight, bias, running_mean, running_var, training, momentum, eps, cudnn_enabled); | |
- return result; | |
-} | |
Tensor batch_norm_backward_elemt(const Tensor & grad_out, const Tensor & input, const Tensor & mean, const Tensor & invstd, const Tensor & weight, const Tensor & mean_dy, const Tensor & mean_dy_xmu) { | |
auto& grad_out_ = unpack(grad_out, "grad_out", 0); | |
auto& input_ = unpack(input, "input", 1); | |
@@ -9047,10 +8610,6 @@ | |
} | |
return result; | |
} | |
-Tensor bernoulli_p(const Tensor & self, double p, c10::optional<Generator> generator) { | |
- auto result = TypeDefault::bernoulli_p(self, p, generator); | |
- return result; | |
-} | |
Tensor & bernoulli__Tensor(Tensor & self, const Tensor & p, c10::optional<Generator> generator) { | |
auto& self_ = unpack(self, "self", 0); | |
auto& p_ = unpack(p, "p", 1); | |
@@ -9156,10 +8715,6 @@ | |
} | |
return out; | |
} | |
-Tensor bilinear(const Tensor & input1, const Tensor & input2, const Tensor & weight, const Tensor & bias) { | |
- auto result = TypeDefault::bilinear(input1, input2, weight, bias); | |
- return result; | |
-} | |
Tensor binary_cross_entropy(const Tensor & self, const Tensor & target, const Tensor & weight, int64_t reduction) { | |
auto& self_ = unpack(self, "self", 0); | |
auto& target_ = unpack(target, "target", 1); | |
@@ -9444,10 +8999,6 @@ | |
} | |
return result; | |
} | |
-Tensor binary_cross_entropy_with_logits_backward(const Tensor & grad_output, const Tensor & self, const Tensor & target, const Tensor & weight, const Tensor & pos_weight, int64_t reduction) { | |
- auto result = TypeDefault::binary_cross_entropy_with_logits_backward(grad_output, self, target, weight, pos_weight, reduction); | |
- return result; | |
-} | |
Tensor bincount(const Tensor & self, const Tensor & weights, int64_t minlength) { | |
auto& self_ = unpack(self, "self", 0); | |
auto weights_ = unpack_opt(weights, "weights", 1); | |
@@ -9520,22 +9071,6 @@ | |
} | |
return result; | |
} | |
-Tensor bitwise_and_Scalar(const Tensor & self, Scalar other) { | |
- auto result = TypeDefault::bitwise_and_Scalar(self, other); | |
- return result; | |
-} | |
-Tensor bitwise_and_Tensor(const Tensor & self, const Tensor & other) { | |
- auto result = TypeDefault::bitwise_and_Tensor(self, other); | |
- return result; | |
-} | |
-Tensor & bitwise_and__Scalar(Tensor & self, Scalar other) { | |
- TypeDefault::bitwise_and__Scalar(self, other); | |
- return self; | |
-} | |
-Tensor & bitwise_and__Tensor(Tensor & self, const Tensor & other) { | |
- TypeDefault::bitwise_and__Tensor(self, other); | |
- return self; | |
-} | |
Tensor & bitwise_and_out_Tensor_out(Tensor & out, const Tensor & self, const Tensor & other) { | |
auto& out_ = unpack(out, "out", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -9620,14 +9155,6 @@ | |
} | |
return out; | |
} | |
-Tensor bitwise_not(const Tensor & self) { | |
- auto result = TypeDefault::bitwise_not(self); | |
- return result; | |
-} | |
-Tensor & bitwise_not_(Tensor & self) { | |
- TypeDefault::bitwise_not_(self); | |
- return self; | |
-} | |
Tensor & bitwise_not_out_out(Tensor & out, const Tensor & self) { | |
auto& out_ = unpack(out, "out", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -9666,22 +9193,6 @@ | |
} | |
return out; | |
} | |
-Tensor bitwise_or_Scalar(const Tensor & self, Scalar other) { | |
- auto result = TypeDefault::bitwise_or_Scalar(self, other); | |
- return result; | |
-} | |
-Tensor bitwise_or_Tensor(const Tensor & self, const Tensor & other) { | |
- auto result = TypeDefault::bitwise_or_Tensor(self, other); | |
- return result; | |
-} | |
-Tensor & bitwise_or__Scalar(Tensor & self, Scalar other) { | |
- TypeDefault::bitwise_or__Scalar(self, other); | |
- return self; | |
-} | |
-Tensor & bitwise_or__Tensor(Tensor & self, const Tensor & other) { | |
- TypeDefault::bitwise_or__Tensor(self, other); | |
- return self; | |
-} | |
Tensor & bitwise_or_out_Tensor_out(Tensor & out, const Tensor & self, const Tensor & other) { | |
auto& out_ = unpack(out, "out", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -9766,22 +9277,6 @@ | |
} | |
return out; | |
} | |
-Tensor bitwise_xor_Scalar(const Tensor & self, Scalar other) { | |
- auto result = TypeDefault::bitwise_xor_Scalar(self, other); | |
- return result; | |
-} | |
-Tensor bitwise_xor_Tensor(const Tensor & self, const Tensor & other) { | |
- auto result = TypeDefault::bitwise_xor_Tensor(self, other); | |
- return result; | |
-} | |
-Tensor & bitwise_xor__Scalar(Tensor & self, Scalar other) { | |
- TypeDefault::bitwise_xor__Scalar(self, other); | |
- return self; | |
-} | |
-Tensor & bitwise_xor__Tensor(Tensor & self, const Tensor & other) { | |
- TypeDefault::bitwise_xor__Tensor(self, other); | |
- return self; | |
-} | |
Tensor & bitwise_xor_out_Tensor_out(Tensor & out, const Tensor & self, const Tensor & other) { | |
auto& out_ = unpack(out, "out", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -9866,18 +9361,6 @@ | |
} | |
return out; | |
} | |
-Tensor blackman_window(int64_t window_length, const TensorOptions & options) { | |
- auto result = TypeDefault::blackman_window(window_length, options); | |
- return result; | |
-} | |
-Tensor blackman_window_periodic(int64_t window_length, bool periodic, const TensorOptions & options) { | |
- auto result = TypeDefault::blackman_window_periodic(window_length, periodic, options); | |
- return result; | |
-} | |
-Tensor block_diag(TensorList tensors) { | |
- auto result = TypeDefault::block_diag(tensors); | |
- return result; | |
-} | |
Tensor bmm(const Tensor & self, const Tensor & mat2) { | |
auto& self_ = unpack(self, "self", 0); | |
auto& mat2_ = unpack(mat2, "mat2", 1); | |
@@ -9966,10 +9449,6 @@ | |
} | |
return out; | |
} | |
-std::vector<Tensor> broadcast_tensors(TensorList tensors) { | |
- auto result = TypeDefault::broadcast_tensors(tensors); | |
- return result; | |
-} | |
Tensor bucketize_Tensor(const Tensor & self, const Tensor & boundaries, bool out_int32, bool right) { | |
auto& self_ = unpack(self, "self", 0); | |
auto& boundaries_ = unpack(boundaries, "boundaries", 1); | |
@@ -10080,14 +9559,6 @@ | |
} | |
return out; | |
} | |
-bool can_cast(ScalarType from, ScalarType to) { | |
- auto result = TypeDefault::can_cast(from, to); | |
- return result; | |
-} | |
-Tensor cartesian_prod(TensorList tensors) { | |
- auto result = TypeDefault::cartesian_prod(tensors); | |
- return result; | |
-} | |
Tensor cat(TensorList tensors, int64_t dim) { | |
auto tensors_ = unpack(tensors, "tensors", 0); | |
std::shared_ptr<CatBackward> grad_fn; | |
@@ -10127,10 +9598,6 @@ | |
} | |
return result; | |
} | |
-Tensor cat_names(TensorList tensors, Dimname dim) { | |
- auto result = TypeDefault::cat_names(tensors, dim); | |
- return result; | |
-} | |
Tensor & cat_out_out(Tensor & out, TensorList tensors, int64_t dim) { | |
auto& out_ = unpack(out, "out", 0); | |
auto tensors_ = unpack(tensors, "tensors", 1); | |
@@ -10177,10 +9644,6 @@ | |
} | |
return out; | |
} | |
-Tensor & cat_out_names_out(Tensor & out, TensorList tensors, Dimname dim) { | |
- TypeDefault::cat_out_names_out(out, tensors, dim); | |
- return out; | |
-} | |
Tensor & cauchy_(Tensor & self, double median, double sigma, c10::optional<Generator> generator) { | |
auto& self_ = unpack(self, "self", 0); | |
check_inplace(self); | |
@@ -10210,10 +9673,6 @@ | |
} | |
return self; | |
} | |
-Tensor cdist(const Tensor & x1, const Tensor & x2, double p, c10::optional<int64_t> compute_mode) { | |
- auto result = TypeDefault::cdist(x1, x2, p, compute_mode); | |
- return result; | |
-} | |
Tensor ceil(const Tensor & self) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<CeilBackward> grad_fn; | |
@@ -10374,10 +9833,6 @@ | |
} | |
return self; | |
} | |
-Tensor chain_matmul(TensorList matrices) { | |
- auto result = TypeDefault::chain_matmul(matrices); | |
- return result; | |
-} | |
Tensor channel_shuffle(const Tensor & self, int64_t groups) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<NotImplemented> grad_fn; | |
@@ -10635,10 +10090,6 @@ | |
} | |
return out; | |
} | |
-std::vector<Tensor> chunk(const Tensor & self, int64_t chunks, int64_t dim) { | |
- auto result = TypeDefault::chunk(self, chunks, dim); | |
- return result; | |
-} | |
Tensor clamp(const Tensor & self, c10::optional<Scalar> min, c10::optional<Scalar> max) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<ClampBackward> grad_fn; | |
@@ -11136,10 +10587,6 @@ | |
} | |
return out; | |
} | |
-Tensor combinations(const Tensor & self, int64_t r, bool with_replacement) { | |
- auto result = TypeDefault::combinations(self, r, with_replacement); | |
- return result; | |
-} | |
Tensor conj(const Tensor & self) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<ConjBackward> grad_fn; | |
@@ -11235,22 +10682,6 @@ | |
} | |
return result; | |
} | |
-Tensor contiguous(const Tensor & self, MemoryFormat memory_format) { | |
- auto result = TypeDefault::contiguous(self, memory_format); | |
- return result; | |
-} | |
-Tensor conv1d(const Tensor & input, const Tensor & weight, const Tensor & bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, int64_t groups) { | |
- auto result = TypeDefault::conv1d(input, weight, bias, stride, padding, dilation, groups); | |
- return result; | |
-} | |
-Tensor conv2d(const Tensor & input, const Tensor & weight, const Tensor & bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, int64_t groups) { | |
- auto result = TypeDefault::conv2d(input, weight, bias, stride, padding, dilation, groups); | |
- return result; | |
-} | |
-Tensor conv3d(const Tensor & input, const Tensor & weight, const Tensor & bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, int64_t groups) { | |
- auto result = TypeDefault::conv3d(input, weight, bias, stride, padding, dilation, groups); | |
- return result; | |
-} | |
Tensor conv_tbc(const Tensor & self, const Tensor & weight, const Tensor & bias, int64_t pad) { | |
auto& self_ = unpack(self, "self", 0); | |
auto& weight_ = unpack(weight, "weight", 1); | |
@@ -11299,29 +10730,6 @@ | |
} | |
return result; | |
} | |
-std::tuple<Tensor,Tensor,Tensor> conv_tbc_backward(const Tensor & self, const Tensor & input, const Tensor & weight, const Tensor & bias, int64_t pad) { | |
- Tensor result0; | |
- Tensor result1; | |
- Tensor result2; | |
- std::tie(result0, result1, result2) = TypeDefault::conv_tbc_backward(self, input, weight, bias, pad); | |
- return std::make_tuple(std::move(result0), std::move(result1), std::move(result2)); | |
-} | |
-Tensor conv_transpose1d(const Tensor & input, const Tensor & weight, const Tensor & bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef output_padding, int64_t groups, IntArrayRef dilation) { | |
- auto result = TypeDefault::conv_transpose1d(input, weight, bias, stride, padding, output_padding, groups, dilation); | |
- return result; | |
-} | |
-Tensor conv_transpose2d_input(const Tensor & input, const Tensor & weight, const Tensor & bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef output_padding, int64_t groups, IntArrayRef dilation) { | |
- auto result = TypeDefault::conv_transpose2d_input(input, weight, bias, stride, padding, output_padding, groups, dilation); | |
- return result; | |
-} | |
-Tensor conv_transpose3d_input(const Tensor & input, const Tensor & weight, const Tensor & bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef output_padding, int64_t groups, IntArrayRef dilation) { | |
- auto result = TypeDefault::conv_transpose3d_input(input, weight, bias, stride, padding, output_padding, groups, dilation); | |
- return result; | |
-} | |
-Tensor convolution(const Tensor & input, const Tensor & weight, const Tensor & bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool transposed, IntArrayRef output_padding, int64_t groups) { | |
- auto result = TypeDefault::convolution(input, weight, bias, stride, padding, dilation, transposed, output_padding, groups); | |
- return result; | |
-} | |
std::tuple<Tensor,Tensor,Tensor> convolution_backward_overrideable(const Tensor & grad_output, const Tensor & input, const Tensor & weight, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool transposed, IntArrayRef output_padding, int64_t groups, std::array<bool,3> output_mask) { | |
auto& grad_output_ = unpack(grad_output, "grad_output", 0); | |
auto& input_ = unpack(input, "input", 1); | |
@@ -11660,14 +11068,6 @@ | |
} | |
return out; | |
} | |
-Tensor cosine_embedding_loss(const Tensor & input1, const Tensor & input2, const Tensor & target, double margin, int64_t reduction) { | |
- auto result = TypeDefault::cosine_embedding_loss(input1, input2, target, margin, reduction); | |
- return result; | |
-} | |
-Tensor cosine_similarity(const Tensor & x1, const Tensor & x2, int64_t dim, double eps) { | |
- auto result = TypeDefault::cosine_similarity(x1, x2, dim, eps); | |
- return result; | |
-} | |
Tensor count_nonzero_dim_IntList(const Tensor & self, IntArrayRef dim) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<CountNonzeroBackward0> grad_fn; | |
@@ -11813,14 +11213,6 @@ | |
} | |
return out; | |
} | |
-Tensor ctc_loss_IntList(const Tensor & log_probs, const Tensor & targets, IntArrayRef input_lengths, IntArrayRef target_lengths, int64_t blank, int64_t reduction, bool zero_infinity) { | |
- auto result = TypeDefault::ctc_loss_IntList(log_probs, targets, input_lengths, target_lengths, blank, reduction, zero_infinity); | |
- return result; | |
-} | |
-Tensor ctc_loss_Tensor(const Tensor & log_probs, const Tensor & targets, const Tensor & input_lengths, const Tensor & target_lengths, int64_t blank, int64_t reduction, bool zero_infinity) { | |
- auto result = TypeDefault::ctc_loss_Tensor(log_probs, targets, input_lengths, target_lengths, blank, reduction, zero_infinity); | |
- return result; | |
-} | |
Tensor cudnn_affine_grid_generator(const Tensor & theta, int64_t N, int64_t C, int64_t H, int64_t W) { | |
auto& theta_ = unpack(theta, "theta", 0); | |
std::shared_ptr<CudnnAffineGridGeneratorBackward> grad_fn; | |
@@ -12572,10 +11964,6 @@ | |
} | |
return std::make_tuple(std::move(grad_self), std::move(grad_grid)); | |
} | |
-bool cudnn_is_acceptable(const Tensor & self) { | |
- auto result = TypeDefault::cudnn_is_acceptable(self); | |
- return result; | |
-} | |
std::tuple<Tensor,Tensor> cummax(const Tensor & self, int64_t dim) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<CummaxBackward> grad_fn; | |
@@ -12611,12 +11999,6 @@ | |
} | |
return std::make_tuple(std::move(values), std::move(indices)); | |
} | |
-std::tuple<Tensor,Tensor> cummax_dimname(const Tensor & self, Dimname dim) { | |
- Tensor values; | |
- Tensor indices; | |
- std::tie(values, indices) = TypeDefault::cummax_dimname(self, dim); | |
- return std::make_tuple(std::move(values), std::move(indices)); | |
-} | |
std::tuple<Tensor &,Tensor &> cummax_out_out(Tensor & values, Tensor & indices, const Tensor & self, int64_t dim) { | |
auto& values_ = unpack(values, "values", 0); | |
auto& indices_ = unpack(indices, "indices", 1); | |
@@ -12664,10 +12046,6 @@ | |
} | |
return std::forward_as_tuple(values, indices); | |
} | |
-std::tuple<Tensor &,Tensor &> cummax_out_dimname_out(Tensor & values, Tensor & indices, const Tensor & self, Dimname dim) { | |
- TypeDefault::cummax_out_dimname_out(values, indices, self, dim); | |
- return std::forward_as_tuple(values, indices); | |
-} | |
std::tuple<Tensor,Tensor> cummin(const Tensor & self, int64_t dim) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<CumminBackward> grad_fn; | |
@@ -12703,12 +12081,6 @@ | |
} | |
return std::make_tuple(std::move(values), std::move(indices)); | |
} | |
-std::tuple<Tensor,Tensor> cummin_dimname(const Tensor & self, Dimname dim) { | |
- Tensor values; | |
- Tensor indices; | |
- std::tie(values, indices) = TypeDefault::cummin_dimname(self, dim); | |
- return std::make_tuple(std::move(values), std::move(indices)); | |
-} | |
std::tuple<Tensor &,Tensor &> cummin_out_out(Tensor & values, Tensor & indices, const Tensor & self, int64_t dim) { | |
auto& values_ = unpack(values, "values", 0); | |
auto& indices_ = unpack(indices, "indices", 1); | |
@@ -12756,10 +12128,6 @@ | |
} | |
return std::forward_as_tuple(values, indices); | |
} | |
-std::tuple<Tensor &,Tensor &> cummin_out_dimname_out(Tensor & values, Tensor & indices, const Tensor & self, Dimname dim) { | |
- TypeDefault::cummin_out_dimname_out(values, indices, self, dim); | |
- return std::forward_as_tuple(values, indices); | |
-} | |
Tensor cumprod(const Tensor & self, int64_t dim, c10::optional<ScalarType> dtype) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<CumprodBackward> grad_fn; | |
@@ -12791,10 +12159,6 @@ | |
} | |
return result; | |
} | |
-Tensor cumprod_dimname(const Tensor & self, Dimname dim, c10::optional<ScalarType> dtype) { | |
- auto result = TypeDefault::cumprod_dimname(self, dim, dtype); | |
- return result; | |
-} | |
Tensor & cumprod_out_out(Tensor & out, const Tensor & self, int64_t dim, c10::optional<ScalarType> dtype) { | |
auto& out_ = unpack(out, "out", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -12833,10 +12197,6 @@ | |
} | |
return out; | |
} | |
-Tensor & cumprod_out_dimname_out(Tensor & out, const Tensor & self, Dimname dim, c10::optional<ScalarType> dtype) { | |
- TypeDefault::cumprod_out_dimname_out(out, self, dim, dtype); | |
- return out; | |
-} | |
Tensor cumsum(const Tensor & self, int64_t dim, c10::optional<ScalarType> dtype) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<CumsumBackward> grad_fn; | |
@@ -12867,10 +12227,6 @@ | |
} | |
return result; | |
} | |
-Tensor cumsum_dimname(const Tensor & self, Dimname dim, c10::optional<ScalarType> dtype) { | |
- auto result = TypeDefault::cumsum_dimname(self, dim, dtype); | |
- return result; | |
-} | |
Tensor & cumsum_out_out(Tensor & out, const Tensor & self, int64_t dim, c10::optional<ScalarType> dtype) { | |
auto& out_ = unpack(out, "out", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -12909,10 +12265,6 @@ | |
} | |
return out; | |
} | |
-Tensor & cumsum_out_dimname_out(Tensor & out, const Tensor & self, Dimname dim, c10::optional<ScalarType> dtype) { | |
- TypeDefault::cumsum_out_dimname_out(out, self, dim, dtype); | |
- return out; | |
-} | |
Tensor deg2rad(const Tensor & self) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<Deg2RadBackward> grad_fn; | |
@@ -13154,10 +12506,6 @@ | |
} | |
return result; | |
} | |
-Tensor diag_embed(const Tensor & self, int64_t offset, int64_t dim1, int64_t dim2) { | |
- auto result = TypeDefault::diag_embed(self, offset, dim1, dim2); | |
- return result; | |
-} | |
Tensor & diag_out_out(Tensor & out, const Tensor & self, int64_t diagonal) { | |
auto& out_ = unpack(out, "out", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -13196,10 +12544,6 @@ | |
} | |
return out; | |
} | |
-Tensor diagflat(const Tensor & self, int64_t offset) { | |
- auto result = TypeDefault::diagflat(self, offset); | |
- return result; | |
-} | |
Tensor diagonal(const Tensor & self, int64_t offset, int64_t dim1, int64_t dim2) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<DiagonalBackward> grad_fn; | |
@@ -13238,10 +12582,6 @@ | |
} | |
return result; | |
} | |
-Tensor diagonal_Dimname(const Tensor & self, Dimname outdim, Dimname dim1, Dimname dim2, int64_t offset) { | |
- auto result = TypeDefault::diagonal_Dimname(self, outdim, dim1, dim2, offset); | |
- return result; | |
-} | |
Tensor digamma(const Tensor & self) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<DigammaBackward> grad_fn; | |
@@ -13655,14 +12995,6 @@ | |
} | |
return out; | |
} | |
-Tensor dropout(const Tensor & input, double p, bool train) { | |
- auto result = TypeDefault::dropout(input, p, train); | |
- return result; | |
-} | |
-Tensor & dropout_(Tensor & self, double p, bool train) { | |
- TypeDefault::dropout_(self, p, train); | |
- return self; | |
-} | |
std::tuple<Tensor,Tensor> eig(const Tensor & self, bool eigenvectors) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<EigBackward> grad_fn; | |
@@ -13746,10 +13078,6 @@ | |
} | |
return std::forward_as_tuple(e, v); | |
} | |
-Tensor einsum(std::string equation, TensorList tensors) { | |
- auto result = TypeDefault::einsum(equation, tensors); | |
- return result; | |
-} | |
Tensor elu(const Tensor & self, Scalar alpha, Scalar scale, Scalar input_scale) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<EluBackward> grad_fn; | |
@@ -13985,18 +13313,6 @@ | |
} | |
return result; | |
} | |
-Tensor embedding_backward(const Tensor & grad, const Tensor & indices, int64_t num_weights, int64_t padding_idx, bool scale_grad_by_freq, bool sparse) { | |
- auto result = TypeDefault::embedding_backward(grad, indices, num_weights, padding_idx, scale_grad_by_freq, sparse); | |
- return result; | |
-} | |
-std::tuple<Tensor,Tensor,Tensor,Tensor> embedding_bag(const Tensor & weight, const Tensor & indices, const Tensor & offsets, bool scale_grad_by_freq, int64_t mode, bool sparse, const Tensor & per_sample_weights, bool include_last_offset) { | |
- Tensor result0; | |
- Tensor result1; | |
- Tensor result2; | |
- Tensor result3; | |
- std::tie(result0, result1, result2, result3) = TypeDefault::embedding_bag(weight, indices, offsets, scale_grad_by_freq, mode, sparse, per_sample_weights, include_last_offset); | |
- return std::make_tuple(std::move(result0), std::move(result1), std::move(result2), std::move(result3)); | |
-} | |
Tensor embedding_dense_backward(const Tensor & grad_output, const Tensor & indices, int64_t num_weights, int64_t padding_idx, bool scale_grad_by_freq) { | |
auto& grad_output_ = unpack(grad_output, "grad_output", 0); | |
auto& indices_ = unpack(indices, "indices", 1); | |
@@ -14071,14 +13387,6 @@ | |
} | |
return self; | |
} | |
-Tensor embedding_sparse_backward(const Tensor & grad, const Tensor & indices, int64_t num_weights, int64_t padding_idx, bool scale_grad_by_freq) { | |
- auto result = TypeDefault::embedding_sparse_backward(grad, indices, num_weights, padding_idx, scale_grad_by_freq); | |
- return result; | |
-} | |
-Tensor empty_names(IntArrayRef size, c10::optional<DimnameList> names, const TensorOptions & options, c10::optional<MemoryFormat> memory_format) { | |
- auto result = TypeDefault::empty_names(size, names, options, memory_format); | |
- return result; | |
-} | |
Tensor empty_memory_format(IntArrayRef size, const TensorOptions & options, c10::optional<MemoryFormat> memory_format) { | |
auto options_ = TensorOptions(options); | |
auto tmp = ([&]() { | |
@@ -14088,18 +13396,6 @@ | |
auto result = std::move(tmp); | |
return result; | |
} | |
-Tensor empty_like(const Tensor & self, const TensorOptions & options, c10::optional<MemoryFormat> memory_format) { | |
- auto result = TypeDefault::empty_like(self, options, memory_format); | |
- return result; | |
-} | |
-Tensor empty_meta(IntArrayRef size, const TensorOptions & options, c10::optional<MemoryFormat> memory_format) { | |
- auto result = TypeDefault::empty_meta(size, options, memory_format); | |
- return result; | |
-} | |
-Tensor & empty_out_out(Tensor & out, IntArrayRef size, c10::optional<MemoryFormat> memory_format) { | |
- TypeDefault::empty_out_out(out, size, memory_format); | |
- return out; | |
-} | |
Tensor empty_quantized(IntArrayRef size, const Tensor & qtensor) { | |
auto& qtensor_ = unpack(qtensor, "qtensor", 1); | |
std::shared_ptr<NotImplemented> grad_fn; | |
@@ -14774,10 +14070,6 @@ | |
} | |
return result; | |
} | |
-Tensor expand_as(const Tensor & self, const Tensor & other) { | |
- auto result = TypeDefault::expand_as(self, other); | |
- return result; | |
-} | |
Tensor expm1(const Tensor & self) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<Expm1Backward> grad_fn; | |
@@ -14908,14 +14200,6 @@ | |
} | |
return self; | |
} | |
-Tensor eye(int64_t n, const TensorOptions & options) { | |
- auto result = TypeDefault::eye(n, options); | |
- return result; | |
-} | |
-Tensor eye_m(int64_t n, int64_t m, const TensorOptions & options) { | |
- auto result = TypeDefault::eye_m(n, m, options); | |
- return result; | |
-} | |
Tensor & eye_out_out(Tensor & out, int64_t n) { | |
auto& out_ = unpack(out, "out", 0); | |
#ifndef NDEBUG | |
@@ -15008,10 +14292,6 @@ | |
} | |
return result; | |
} | |
-Tensor fake_quantize_per_channel_affine_backward(const Tensor & grad, const Tensor & self, const Tensor & scale, const Tensor & zero_point, int64_t axis, int64_t quant_min, int64_t quant_max) { | |
- auto result = TypeDefault::fake_quantize_per_channel_affine_backward(grad, self, scale, zero_point, axis, quant_min, quant_max); | |
- return result; | |
-} | |
Tensor fake_quantize_per_tensor_affine(const Tensor & self, double scale, int64_t zero_point, int64_t quant_min, int64_t quant_max) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<FakeQuantizePerTensorAffineBackward> grad_fn; | |
@@ -15045,66 +14325,6 @@ | |
} | |
return result; | |
} | |
-Tensor fake_quantize_per_tensor_affine_backward(const Tensor & grad, const Tensor & self, double scale, int64_t zero_point, int64_t quant_min, int64_t quant_max) { | |
- auto result = TypeDefault::fake_quantize_per_tensor_affine_backward(grad, self, scale, zero_point, quant_min, quant_max); | |
- return result; | |
-} | |
-Tensor fbgemm_linear_fp16_weight(const Tensor & input, const Tensor & packed_weight, const Tensor & bias) { | |
- auto result = TypeDefault::fbgemm_linear_fp16_weight(input, packed_weight, bias); | |
- return result; | |
-} | |
-Tensor fbgemm_linear_fp16_weight_fp32_activation(const Tensor & input, const Tensor & packed_weight, const Tensor & bias) { | |
- auto result = TypeDefault::fbgemm_linear_fp16_weight_fp32_activation(input, packed_weight, bias); | |
- return result; | |
-} | |
-Tensor fbgemm_linear_int8_weight(const Tensor & input, const Tensor & weight, const Tensor & packed, const Tensor & col_offsets, Scalar weight_scale, Scalar weight_zero_point, const Tensor & bias) { | |
- auto result = TypeDefault::fbgemm_linear_int8_weight(input, weight, packed, col_offsets, weight_scale, weight_zero_point, bias); | |
- return result; | |
-} | |
-Tensor fbgemm_linear_int8_weight_fp32_activation(const Tensor & input, const Tensor & weight, const Tensor & packed, const Tensor & col_offsets, Scalar weight_scale, Scalar weight_zero_point, const Tensor & bias) { | |
- auto result = TypeDefault::fbgemm_linear_int8_weight_fp32_activation(input, weight, packed, col_offsets, weight_scale, weight_zero_point, bias); | |
- return result; | |
-} | |
-std::tuple<Tensor,Tensor,double,int64_t> fbgemm_linear_quantize_weight(const Tensor & input) { | |
- Tensor result0; | |
- Tensor result1; | |
- double result2; | |
- int64_t result3; | |
- std::tie(result0, result1, result2, result3) = TypeDefault::fbgemm_linear_quantize_weight(input); | |
- return std::make_tuple(std::move(result0), std::move(result1), std::move(result2), std::move(result3)); | |
-} | |
-Tensor fbgemm_pack_gemm_matrix_fp16(const Tensor & input) { | |
- auto result = TypeDefault::fbgemm_pack_gemm_matrix_fp16(input); | |
- return result; | |
-} | |
-Tensor fbgemm_pack_quantized_matrix(const Tensor & input) { | |
- auto result = TypeDefault::fbgemm_pack_quantized_matrix(input); | |
- return result; | |
-} | |
-Tensor fbgemm_pack_quantized_matrix_KN(const Tensor & input, int64_t K, int64_t N) { | |
- auto result = TypeDefault::fbgemm_pack_quantized_matrix_KN(input, K, N); | |
- return result; | |
-} | |
-Tensor feature_alpha_dropout(const Tensor & input, double p, bool train) { | |
- auto result = TypeDefault::feature_alpha_dropout(input, p, train); | |
- return result; | |
-} | |
-Tensor & feature_alpha_dropout_(Tensor & self, double p, bool train) { | |
- TypeDefault::feature_alpha_dropout_(self, p, train); | |
- return self; | |
-} | |
-Tensor feature_dropout(const Tensor & input, double p, bool train) { | |
- auto result = TypeDefault::feature_dropout(input, p, train); | |
- return result; | |
-} | |
-Tensor & feature_dropout_(Tensor & self, double p, bool train) { | |
- TypeDefault::feature_dropout_(self, p, train); | |
- return self; | |
-} | |
-Tensor fft(const Tensor & self, int64_t signal_ndim, bool normalized) { | |
- auto result = TypeDefault::fft(self, signal_ndim, normalized); | |
- return result; | |
-} | |
Tensor & fill__Scalar(Tensor & self, Scalar value) { | |
auto& self_ = unpack(self, "self", 0); | |
check_inplace(self); | |
@@ -15171,26 +14391,6 @@ | |
} | |
return self; | |
} | |
-Tensor & fill_diagonal_(Tensor & self, Scalar fill_value, bool wrap) { | |
- TypeDefault::fill_diagonal_(self, fill_value, wrap); | |
- return self; | |
-} | |
-Tensor flatten_using_ints(const Tensor & self, int64_t start_dim, int64_t end_dim) { | |
- auto result = TypeDefault::flatten_using_ints(self, start_dim, end_dim); | |
- return result; | |
-} | |
-Tensor flatten_named_out_dim(const Tensor & self, int64_t start_dim, int64_t end_dim, Dimname out_dim) { | |
- auto result = TypeDefault::flatten_named_out_dim(self, start_dim, end_dim, out_dim); | |
- return result; | |
-} | |
-Tensor flatten_using_names(const Tensor & self, Dimname start_dim, Dimname end_dim, Dimname out_dim) { | |
- auto result = TypeDefault::flatten_using_names(self, start_dim, end_dim, out_dim); | |
- return result; | |
-} | |
-Tensor flatten_DimnameList(const Tensor & self, DimnameList dims, Dimname out_dim) { | |
- auto result = TypeDefault::flatten_DimnameList(self, dims, out_dim); | |
- return result; | |
-} | |
Tensor flip(const Tensor & self, IntArrayRef dims) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<FlipBackward> grad_fn; | |
@@ -15220,14 +14420,6 @@ | |
} | |
return result; | |
} | |
-Tensor fliplr(const Tensor & self) { | |
- auto result = TypeDefault::fliplr(self); | |
- return result; | |
-} | |
-Tensor flipud(const Tensor & self) { | |
- auto result = TypeDefault::flipud(self); | |
- return result; | |
-} | |
Tensor floor(const Tensor & self) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<FloorBackward> grad_fn; | |
@@ -15321,10 +14513,6 @@ | |
} | |
return result; | |
} | |
-Tensor floor_divide_Scalar(const Tensor & self, Scalar other) { | |
- auto result = TypeDefault::floor_divide_Scalar(self, other); | |
- return result; | |
-} | |
Tensor & floor_divide__Tensor(Tensor & self, const Tensor & other) { | |
auto& self_ = unpack(self, "self", 0); | |
auto& other_ = unpack(other, "other", 1); | |
@@ -15362,10 +14550,6 @@ | |
} | |
return self; | |
} | |
-Tensor & floor_divide__Scalar(Tensor & self, Scalar other) { | |
- TypeDefault::floor_divide__Scalar(self, other); | |
- return self; | |
-} | |
Tensor & floor_divide_out_out(Tensor & out, const Tensor & self, const Tensor & other) { | |
auto& out_ = unpack(out, "out", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -16167,18 +15351,6 @@ | |
} | |
return std::forward_as_tuple(output, indices); | |
} | |
-Tensor frobenius_norm(const Tensor & self) { | |
- auto result = TypeDefault::frobenius_norm(self); | |
- return result; | |
-} | |
-Tensor frobenius_norm_dim(const Tensor & self, IntArrayRef dim, bool keepdim) { | |
- auto result = TypeDefault::frobenius_norm_dim(self, dim, keepdim); | |
- return result; | |
-} | |
-Tensor & frobenius_norm_out_out(Tensor & out, const Tensor & self, IntArrayRef dim, bool keepdim) { | |
- TypeDefault::frobenius_norm_out_out(out, self, dim, keepdim); | |
- return out; | |
-} | |
Tensor from_file(std::string filename, c10::optional<bool> shared, c10::optional<int64_t> size, const TensorOptions & options) { | |
auto options_ = TensorOptions(options); | |
auto tmp = ([&]() { | |
@@ -16188,22 +15360,6 @@ | |
auto result = std::move(tmp); | |
return result; | |
} | |
-Tensor full_names(IntArrayRef size, Scalar fill_value, c10::optional<DimnameList> names, const TensorOptions & options) { | |
- auto result = TypeDefault::full_names(size, fill_value, names, options); | |
- return result; | |
-} | |
-Tensor full(IntArrayRef size, Scalar fill_value, const TensorOptions & options) { | |
- auto result = TypeDefault::full(size, fill_value, options); | |
- return result; | |
-} | |
-Tensor full_like(const Tensor & self, Scalar fill_value, const TensorOptions & options, c10::optional<MemoryFormat> memory_format) { | |
- auto result = TypeDefault::full_like(self, fill_value, options, memory_format); | |
- return result; | |
-} | |
-Tensor & full_out_out(Tensor & out, IntArrayRef size, Scalar fill_value) { | |
- TypeDefault::full_out_out(out, size, fill_value); | |
- return out; | |
-} | |
Tensor gather(const Tensor & self, int64_t dim, const Tensor & index, bool sparse_grad) { | |
auto& self_ = unpack(self, "self", 0); | |
auto& index_ = unpack(index, "index", 2); | |
@@ -16245,10 +15401,6 @@ | |
} | |
return result; | |
} | |
-Tensor gather_dimname(const Tensor & self, Dimname dim, const Tensor & index, bool sparse_grad) { | |
- auto result = TypeDefault::gather_dimname(self, dim, index, sparse_grad); | |
- return result; | |
-} | |
Tensor & gather_out_out(Tensor & out, const Tensor & self, int64_t dim, const Tensor & index, bool sparse_grad) { | |
auto& out_ = unpack(out, "out", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -16295,22 +15447,6 @@ | |
} | |
return out; | |
} | |
-Tensor & gather_out_dimname_out(Tensor & out, const Tensor & self, Dimname dim, const Tensor & index, bool sparse_grad) { | |
- TypeDefault::gather_out_dimname_out(out, self, dim, index, sparse_grad); | |
- return out; | |
-} | |
-Tensor gcd(const Tensor & self, const Tensor & other) { | |
- auto result = TypeDefault::gcd(self, other); | |
- return result; | |
-} | |
-Tensor & gcd_(Tensor & self, const Tensor & other) { | |
- TypeDefault::gcd_(self, other); | |
- return self; | |
-} | |
-Tensor & gcd_out_out(Tensor & out, const Tensor & self, const Tensor & other) { | |
- TypeDefault::gcd_out_out(out, self, other); | |
- return out; | |
-} | |
Tensor ge_Scalar(const Tensor & self, Scalar other) { | |
auto& self_ = unpack(self, "self", 0); | |
#ifndef NDEBUG | |
@@ -16904,10 +16040,6 @@ | |
} | |
return out; | |
} | |
-Tensor grid_sampler(const Tensor & input, const Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners) { | |
- auto result = TypeDefault::grid_sampler(input, grid, interpolation_mode, padding_mode, align_corners); | |
- return result; | |
-} | |
Tensor grid_sampler_2d(const Tensor & input, const Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners) { | |
auto& input_ = unpack(input, "input", 0); | |
auto& grid_ = unpack(grid, "grid", 1); | |
@@ -17082,26 +16214,6 @@ | |
} | |
return std::make_tuple(std::move(result0), std::move(result1)); | |
} | |
-Tensor group_norm(const Tensor & input, int64_t num_groups, const Tensor & weight, const Tensor & bias, double eps, bool cudnn_enabled) { | |
- auto result = TypeDefault::group_norm(input, num_groups, weight, bias, eps, cudnn_enabled); | |
- return result; | |
-} | |
-std::tuple<Tensor,Tensor> gru_input(const Tensor & input, const Tensor & hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first) { | |
- Tensor result0; | |
- Tensor result1; | |
- std::tie(result0, result1) = TypeDefault::gru_input(input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first); | |
- return std::make_tuple(std::move(result0), std::move(result1)); | |
-} | |
-std::tuple<Tensor,Tensor> gru_data(const Tensor & data, const Tensor & batch_sizes, const Tensor & hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional) { | |
- Tensor result0; | |
- Tensor result1; | |
- std::tie(result0, result1) = TypeDefault::gru_data(data, batch_sizes, hx, params, has_biases, num_layers, dropout, train, bidirectional); | |
- return std::make_tuple(std::move(result0), std::move(result1)); | |
-} | |
-Tensor gru_cell(const Tensor & input, const Tensor & hx, const Tensor & w_ih, const Tensor & w_hh, const Tensor & b_ih, const Tensor & b_hh) { | |
- auto result = TypeDefault::gru_cell(input, hx, w_ih, w_hh, b_ih, b_hh); | |
- return result; | |
-} | |
Tensor gt_Scalar(const Tensor & self, Scalar other) { | |
auto& self_ = unpack(self, "self", 0); | |
#ifndef NDEBUG | |
@@ -17283,30 +16395,6 @@ | |
increment_version(out); | |
return out; | |
} | |
-Tensor hamming_window(int64_t window_length, const TensorOptions & options) { | |
- auto result = TypeDefault::hamming_window(window_length, options); | |
- return result; | |
-} | |
-Tensor hamming_window_periodic(int64_t window_length, bool periodic, const TensorOptions & options) { | |
- auto result = TypeDefault::hamming_window_periodic(window_length, periodic, options); | |
- return result; | |
-} | |
-Tensor hamming_window_periodic_alpha(int64_t window_length, bool periodic, double alpha, const TensorOptions & options) { | |
- auto result = TypeDefault::hamming_window_periodic_alpha(window_length, periodic, alpha, options); | |
- return result; | |
-} | |
-Tensor hamming_window_periodic_alpha_beta(int64_t window_length, bool periodic, double alpha, double beta, const TensorOptions & options) { | |
- auto result = TypeDefault::hamming_window_periodic_alpha_beta(window_length, periodic, alpha, beta, options); | |
- return result; | |
-} | |
-Tensor hann_window(int64_t window_length, const TensorOptions & options) { | |
- auto result = TypeDefault::hann_window(window_length, options); | |
- return result; | |
-} | |
-Tensor hann_window_periodic(int64_t window_length, bool periodic, const TensorOptions & options) { | |
- auto result = TypeDefault::hann_window_periodic(window_length, periodic, options); | |
- return result; | |
-} | |
Tensor hardshrink(const Tensor & self, Scalar lambd) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<HardshrinkBackward> grad_fn; | |
@@ -17829,10 +16917,6 @@ | |
} | |
return out; | |
} | |
-Tensor hinge_embedding_loss(const Tensor & self, const Tensor & target, double margin, int64_t reduction) { | |
- auto result = TypeDefault::hinge_embedding_loss(self, target, margin, reduction); | |
- return result; | |
-} | |
Tensor histc(const Tensor & self, int64_t bins, Scalar min, Scalar max) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<HistcBackward> grad_fn; | |
@@ -17981,10 +17065,6 @@ | |
} | |
return out; | |
} | |
-Tensor ifft(const Tensor & self, int64_t signal_ndim, bool normalized) { | |
- auto result = TypeDefault::ifft(self, signal_ndim, normalized); | |
- return result; | |
-} | |
Tensor im2col(const Tensor & self, IntArrayRef kernel_size, IntArrayRef dilation, IntArrayRef padding, IntArrayRef stride) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<Im2ColBackward> grad_fn; | |
@@ -18127,10 +17207,6 @@ | |
} | |
return out; | |
} | |
-Tensor imag(const Tensor & self) { | |
- auto result = TypeDefault::imag(self); | |
- return result; | |
-} | |
Tensor index_Tensor(const Tensor & self, TensorList indices) { | |
auto& self_ = unpack(self, "self", 0); | |
auto indices_ = unpack(indices, "indices", 1); | |
@@ -18178,14 +17254,6 @@ | |
} | |
return result; | |
} | |
-Tensor index_add(const Tensor & self, int64_t dim, const Tensor & index, const Tensor & source) { | |
- auto result = TypeDefault::index_add(self, dim, index, source); | |
- return result; | |
-} | |
-Tensor index_add_dimname(const Tensor & self, Dimname dim, const Tensor & index, const Tensor & source) { | |
- auto result = TypeDefault::index_add_dimname(self, dim, index, source); | |
- return result; | |
-} | |
Tensor & index_add_(Tensor & self, int64_t dim, const Tensor & index, const Tensor & source) { | |
auto& self_ = unpack(self, "self", 0); | |
auto& index_ = unpack(index, "index", 2); | |
@@ -18238,14 +17306,6 @@ | |
} | |
return self; | |
} | |
-Tensor index_copy(const Tensor & self, int64_t dim, const Tensor & index, const Tensor & source) { | |
- auto result = TypeDefault::index_copy(self, dim, index, source); | |
- return result; | |
-} | |
-Tensor index_copy_dimname(const Tensor & self, Dimname dim, const Tensor & index, const Tensor & source) { | |
- auto result = TypeDefault::index_copy_dimname(self, dim, index, source); | |
- return result; | |
-} | |
Tensor & index_copy_(Tensor & self, int64_t dim, const Tensor & index, const Tensor & source) { | |
auto& self_ = unpack(self, "self", 0); | |
auto& index_ = unpack(index, "index", 2); | |
@@ -18296,26 +17356,6 @@ | |
} | |
return self; | |
} | |
-Tensor & index_copy__dimname(Tensor & self, Dimname dim, const Tensor & index, const Tensor & source) { | |
- TypeDefault::index_copy__dimname(self, dim, index, source); | |
- return self; | |
-} | |
-Tensor index_fill_int_Scalar(const Tensor & self, int64_t dim, const Tensor & index, Scalar value) { | |
- auto result = TypeDefault::index_fill_int_Scalar(self, dim, index, value); | |
- return result; | |
-} | |
-Tensor index_fill_int_Tensor(const Tensor & self, int64_t dim, const Tensor & index, const Tensor & value) { | |
- auto result = TypeDefault::index_fill_int_Tensor(self, dim, index, value); | |
- return result; | |
-} | |
-Tensor index_fill_Dimname_Scalar(const Tensor & self, Dimname dim, const Tensor & index, Scalar value) { | |
- auto result = TypeDefault::index_fill_Dimname_Scalar(self, dim, index, value); | |
- return result; | |
-} | |
-Tensor index_fill_Dimname_Tensor(const Tensor & self, Dimname dim, const Tensor & index, const Tensor & value) { | |
- auto result = TypeDefault::index_fill_Dimname_Tensor(self, dim, index, value); | |
- return result; | |
-} | |
Tensor & index_fill__int_Scalar(Tensor & self, int64_t dim, const Tensor & index, Scalar value) { | |
auto& self_ = unpack(self, "self", 0); | |
auto& index_ = unpack(index, "index", 2); | |
@@ -18402,18 +17442,6 @@ | |
} | |
return self; | |
} | |
-Tensor & index_fill__Dimname_Scalar(Tensor & self, Dimname dim, const Tensor & index, Scalar value) { | |
- TypeDefault::index_fill__Dimname_Scalar(self, dim, index, value); | |
- return self; | |
-} | |
-Tensor & index_fill__Dimname_Tensor(Tensor & self, Dimname dim, const Tensor & index, const Tensor & value) { | |
- TypeDefault::index_fill__Dimname_Tensor(self, dim, index, value); | |
- return self; | |
-} | |
-Tensor index_put(const Tensor & self, TensorList indices, const Tensor & values, bool accumulate) { | |
- auto result = TypeDefault::index_put(self, indices, values, accumulate); | |
- return result; | |
-} | |
Tensor & index_put_(Tensor & self, TensorList indices, const Tensor & values, bool accumulate) { | |
auto& self_ = unpack(self, "self", 0); | |
auto indices_ = unpack(indices, "indices", 1); | |
@@ -18510,10 +17538,6 @@ | |
} | |
return result; | |
} | |
-Tensor index_select_dimname(const Tensor & self, Dimname dim, const Tensor & index) { | |
- auto result = TypeDefault::index_select_dimname(self, dim, index); | |
- return result; | |
-} | |
Tensor & index_select_out_out(Tensor & out, const Tensor & self, int64_t dim, const Tensor & index) { | |
auto& out_ = unpack(out, "out", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -18560,10 +17584,6 @@ | |
} | |
return out; | |
} | |
-Tensor & index_select_out_dimname_out(Tensor & out, const Tensor & self, Dimname dim, const Tensor & index) { | |
- TypeDefault::index_select_out_dimname_out(out, self, dim, index); | |
- return out; | |
-} | |
Tensor indices(const Tensor & self) { | |
auto& self_ = unpack(self, "self", 0); | |
#ifndef NDEBUG | |
@@ -18584,10 +17604,6 @@ | |
#endif | |
return result; | |
} | |
-Tensor instance_norm(const Tensor & input, const Tensor & weight, const Tensor & bias, const Tensor & running_mean, const Tensor & running_var, bool use_input_stats, double momentum, double eps, bool cudnn_enabled) { | |
- auto result = TypeDefault::instance_norm(input, weight, bias, running_mean, running_var, use_input_stats, momentum, eps, cudnn_enabled); | |
- return result; | |
-} | |
Tensor int_repr(const Tensor & self) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<NotImplemented> grad_fn; | |
@@ -18685,10 +17701,6 @@ | |
} | |
return out; | |
} | |
-Tensor irfft(const Tensor & self, int64_t signal_ndim, bool normalized, bool onesided, IntArrayRef signal_sizes) { | |
- auto result = TypeDefault::irfft(self, signal_ndim, normalized, onesided, signal_sizes); | |
- return result; | |
-} | |
bool is_coalesced(const Tensor & self) { | |
auto& self_ = unpack(self, "self", 0); | |
#ifndef NDEBUG | |
@@ -18709,30 +17721,6 @@ | |
#endif | |
return result; | |
} | |
-bool is_complex(const Tensor & self) { | |
- auto result = TypeDefault::is_complex(self); | |
- return result; | |
-} | |
-bool is_distributed(const Tensor & self) { | |
- auto result = TypeDefault::is_distributed(self); | |
- return result; | |
-} | |
-bool is_floating_point(const Tensor & self) { | |
- auto result = TypeDefault::is_floating_point(self); | |
- return result; | |
-} | |
-bool is_nonzero(const Tensor & self) { | |
- auto result = TypeDefault::is_nonzero(self); | |
- return result; | |
-} | |
-bool is_pinned(const Tensor & self) { | |
- auto result = TypeDefault::is_pinned(self); | |
- return result; | |
-} | |
-bool is_same_size(const Tensor & self, const Tensor & other) { | |
- auto result = TypeDefault::is_same_size(self, other); | |
- return result; | |
-} | |
bool is_set_to(const Tensor & self, const Tensor & tensor) { | |
auto& self_ = unpack(self, "self", 0); | |
auto& tensor_ = unpack(tensor, "tensor", 1); | |
@@ -18761,26 +17749,6 @@ | |
#endif | |
return result; | |
} | |
-bool is_signed(const Tensor & self) { | |
- auto result = TypeDefault::is_signed(self); | |
- return result; | |
-} | |
-bool is_vulkan_available() { | |
- auto result = TypeDefault::is_vulkan_available(); | |
- return result; | |
-} | |
-Tensor isclose(const Tensor & self, const Tensor & other, double rtol, double atol, bool equal_nan) { | |
- auto result = TypeDefault::isclose(self, other, rtol, atol, equal_nan); | |
- return result; | |
-} | |
-Tensor isfinite(const Tensor & self) { | |
- auto result = TypeDefault::isfinite(self); | |
- return result; | |
-} | |
-Tensor isinf(const Tensor & self) { | |
- auto result = TypeDefault::isinf(self); | |
- return result; | |
-} | |
Tensor isnan(const Tensor & self) { | |
auto& self_ = unpack(self, "self", 0); | |
#ifndef NDEBUG | |
@@ -18801,10 +17769,6 @@ | |
#endif | |
return result; | |
} | |
-Tensor isneginf(const Tensor & self) { | |
- auto result = TypeDefault::isneginf(self); | |
- return result; | |
-} | |
Tensor & isneginf_out_out(Tensor & out, const Tensor & self) { | |
auto& out_ = unpack(out, "out", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -18843,10 +17807,6 @@ | |
} | |
return out; | |
} | |
-Tensor isposinf(const Tensor & self) { | |
- auto result = TypeDefault::isposinf(self); | |
- return result; | |
-} | |
Tensor & isposinf_out_out(Tensor & out, const Tensor & self) { | |
auto& out_ = unpack(out, "out", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -18885,18 +17845,6 @@ | |
} | |
return out; | |
} | |
-Tensor isreal(const Tensor & self) { | |
- auto result = TypeDefault::isreal(self); | |
- return result; | |
-} | |
-Tensor istft(const Tensor & self, int64_t n_fft, c10::optional<int64_t> hop_length, c10::optional<int64_t> win_length, const Tensor & window, bool center, bool normalized, bool onesided, c10::optional<int64_t> length) { | |
- auto result = TypeDefault::istft(self, n_fft, hop_length, win_length, window, center, normalized, onesided, length); | |
- return result; | |
-} | |
-Scalar item(const Tensor & self) { | |
- auto result = TypeDefault::item(self); | |
- return result; | |
-} | |
Tensor kl_div(const Tensor & self, const Tensor & target, int64_t reduction, bool log_target) { | |
auto& self_ = unpack(self, "self", 0); | |
auto& target_ = unpack(target, "target", 1); | |
@@ -19021,12 +17969,6 @@ | |
} | |
return std::make_tuple(std::move(values), std::move(indices)); | |
} | |
-std::tuple<Tensor,Tensor> kthvalue_dimname(const Tensor & self, int64_t k, Dimname dim, bool keepdim) { | |
- Tensor values; | |
- Tensor indices; | |
- std::tie(values, indices) = TypeDefault::kthvalue_dimname(self, k, dim, keepdim); | |
- return std::make_tuple(std::move(values), std::move(indices)); | |
-} | |
std::tuple<Tensor &,Tensor &> kthvalue_out_values(Tensor & values, Tensor & indices, const Tensor & self, int64_t k, int64_t dim, bool keepdim) { | |
auto& values_ = unpack(values, "values", 0); | |
auto& indices_ = unpack(indices, "indices", 1); | |
@@ -19074,10 +18016,6 @@ | |
} | |
return std::forward_as_tuple(values, indices); | |
} | |
-std::tuple<Tensor &,Tensor &> kthvalue_out_dimname_out(Tensor & values, Tensor & indices, const Tensor & self, int64_t k, Dimname dim, bool keepdim) { | |
- TypeDefault::kthvalue_out_dimname_out(values, indices, self, k, dim, keepdim); | |
- return std::forward_as_tuple(values, indices); | |
-} | |
Tensor l1_loss(const Tensor & self, const Tensor & target, int64_t reduction) { | |
auto& self_ = unpack(self, "self", 0); | |
auto& target_ = unpack(target, "target", 1); | |
@@ -19266,22 +18204,6 @@ | |
} | |
return out; | |
} | |
-Tensor layer_norm(const Tensor & input, IntArrayRef normalized_shape, const Tensor & weight, const Tensor & bias, double eps, bool cudnn_enable) { | |
- auto result = TypeDefault::layer_norm(input, normalized_shape, weight, bias, eps, cudnn_enable); | |
- return result; | |
-} | |
-Tensor lcm(const Tensor & self, const Tensor & other) { | |
- auto result = TypeDefault::lcm(self, other); | |
- return result; | |
-} | |
-Tensor & lcm_(Tensor & self, const Tensor & other) { | |
- TypeDefault::lcm_(self, other); | |
- return self; | |
-} | |
-Tensor & lcm_out_out(Tensor & out, const Tensor & self, const Tensor & other) { | |
- TypeDefault::lcm_out_out(out, self, other); | |
- return out; | |
-} | |
Tensor le_Scalar(const Tensor & self, Scalar other) { | |
auto& self_ = unpack(self, "self", 0); | |
#ifndef NDEBUG | |
@@ -19977,14 +18899,6 @@ | |
} | |
return out; | |
} | |
-Tensor linear(const Tensor & input, const Tensor & weight, const Tensor & bias) { | |
- auto result = TypeDefault::linear(input, weight, bias); | |
- return result; | |
-} | |
-Tensor linspace(Scalar start, Scalar end, int64_t steps, const TensorOptions & options) { | |
- auto result = TypeDefault::linspace(start, end, steps, options); | |
- return result; | |
-} | |
Tensor & linspace_out_out(Tensor & out, Scalar start, Scalar end, int64_t steps) { | |
auto& out_ = unpack(out, "out", 0); | |
#ifndef NDEBUG | |
@@ -20422,10 +19336,6 @@ | |
} | |
return out; | |
} | |
-Tensor log_sigmoid(const Tensor & self) { | |
- auto result = TypeDefault::log_sigmoid(self); | |
- return result; | |
-} | |
Tensor log_sigmoid_backward(const Tensor & grad_output, const Tensor & self, const Tensor & buffer) { | |
auto& grad_output_ = unpack(grad_output, "grad_output", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -20609,18 +19519,6 @@ | |
} | |
return std::forward_as_tuple(output, buffer); | |
} | |
-Tensor & log_sigmoid_out_out(Tensor & out, const Tensor & self) { | |
- TypeDefault::log_sigmoid_out_out(out, self); | |
- return out; | |
-} | |
-Tensor log_softmax_int(const Tensor & self, int64_t dim, c10::optional<ScalarType> dtype) { | |
- auto result = TypeDefault::log_softmax_int(self, dim, dtype); | |
- return result; | |
-} | |
-Tensor log_softmax_Dimname(const Tensor & self, Dimname dim, c10::optional<ScalarType> dtype) { | |
- auto result = TypeDefault::log_softmax_Dimname(self, dim, dtype); | |
- return result; | |
-} | |
Tensor logaddexp(const Tensor & self, const Tensor & other) { | |
auto& self_ = unpack(self, "self", 0); | |
auto& other_ = unpack(other, "other", 1); | |
@@ -20822,10 +19720,6 @@ | |
} | |
return result; | |
} | |
-Tensor logcumsumexp_dimname(const Tensor & self, Dimname dim) { | |
- auto result = TypeDefault::logcumsumexp_dimname(self, dim); | |
- return result; | |
-} | |
Tensor & logcumsumexp_out_out(Tensor & out, const Tensor & self, int64_t dim) { | |
auto& out_ = unpack(out, "out", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -20864,10 +19758,6 @@ | |
} | |
return out; | |
} | |
-Tensor & logcumsumexp_out_dimname_out(Tensor & out, const Tensor & self, Dimname dim) { | |
- TypeDefault::logcumsumexp_out_dimname_out(out, self, dim); | |
- return out; | |
-} | |
Tensor logdet(const Tensor & self) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<LogdetBackward> grad_fn; | |
@@ -20900,14 +19790,6 @@ | |
} | |
return result; | |
} | |
-Tensor logical_and(const Tensor & self, const Tensor & other) { | |
- auto result = TypeDefault::logical_and(self, other); | |
- return result; | |
-} | |
-Tensor & logical_and_(Tensor & self, const Tensor & other) { | |
- TypeDefault::logical_and_(self, other); | |
- return self; | |
-} | |
Tensor & logical_and_out_out(Tensor & out, const Tensor & self, const Tensor & other) { | |
auto& out_ = unpack(out, "out", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -20954,14 +19836,6 @@ | |
} | |
return out; | |
} | |
-Tensor logical_not(const Tensor & self) { | |
- auto result = TypeDefault::logical_not(self); | |
- return result; | |
-} | |
-Tensor & logical_not_(Tensor & self) { | |
- TypeDefault::logical_not_(self); | |
- return self; | |
-} | |
Tensor & logical_not_out_out(Tensor & out, const Tensor & self) { | |
auto& out_ = unpack(out, "out", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -21000,14 +19874,6 @@ | |
} | |
return out; | |
} | |
-Tensor logical_or(const Tensor & self, const Tensor & other) { | |
- auto result = TypeDefault::logical_or(self, other); | |
- return result; | |
-} | |
-Tensor & logical_or_(Tensor & self, const Tensor & other) { | |
- TypeDefault::logical_or_(self, other); | |
- return self; | |
-} | |
Tensor & logical_or_out_out(Tensor & out, const Tensor & self, const Tensor & other) { | |
auto& out_ = unpack(out, "out", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -21054,14 +19920,6 @@ | |
} | |
return out; | |
} | |
-Tensor logical_xor(const Tensor & self, const Tensor & other) { | |
- auto result = TypeDefault::logical_xor(self, other); | |
- return result; | |
-} | |
-Tensor & logical_xor_(Tensor & self, const Tensor & other) { | |
- TypeDefault::logical_xor_(self, other); | |
- return self; | |
-} | |
Tensor & logical_xor_out_out(Tensor & out, const Tensor & self, const Tensor & other) { | |
auto& out_ = unpack(out, "out", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -21169,10 +20027,6 @@ | |
} | |
return self; | |
} | |
-Tensor logit_backward(const Tensor & grad_output, const Tensor & self, c10::optional<double> eps) { | |
- auto result = TypeDefault::logit_backward(grad_output, self, eps); | |
- return result; | |
-} | |
Tensor & logit_backward_out_grad_input(Tensor & grad_input, const Tensor & grad_output, const Tensor & self, c10::optional<double> eps) { | |
auto& grad_input_ = unpack(grad_input, "grad_input", 0); | |
auto& grad_output_ = unpack(grad_output, "grad_output", 1); | |
@@ -21257,10 +20111,6 @@ | |
} | |
return out; | |
} | |
-Tensor logspace(Scalar start, Scalar end, int64_t steps, double base, const TensorOptions & options) { | |
- auto result = TypeDefault::logspace(start, end, steps, base, options); | |
- return result; | |
-} | |
Tensor & logspace_out_out(Tensor & out, Scalar start, Scalar end, int64_t steps, double base) { | |
auto& out_ = unpack(out, "out", 0); | |
#ifndef NDEBUG | |
@@ -21315,10 +20165,6 @@ | |
} | |
return result; | |
} | |
-Tensor logsumexp_names(const Tensor & self, DimnameList dim, bool keepdim) { | |
- auto result = TypeDefault::logsumexp_names(self, dim, keepdim); | |
- return result; | |
-} | |
Tensor & logsumexp_out_out(Tensor & out, const Tensor & self, IntArrayRef dim, bool keepdim) { | |
auto& out_ = unpack(out, "out", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -21357,30 +20203,6 @@ | |
} | |
return out; | |
} | |
-Tensor & logsumexp_out_names_out(Tensor & out, const Tensor & self, DimnameList dim, bool keepdim) { | |
- TypeDefault::logsumexp_out_names_out(out, self, dim, keepdim); | |
- return out; | |
-} | |
-std::tuple<Tensor,Tensor,Tensor> lstm_input(const Tensor & input, TensorList hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first) { | |
- Tensor result0; | |
- Tensor result1; | |
- Tensor result2; | |
- std::tie(result0, result1, result2) = TypeDefault::lstm_input(input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first); | |
- return std::make_tuple(std::move(result0), std::move(result1), std::move(result2)); | |
-} | |
-std::tuple<Tensor,Tensor,Tensor> lstm_data(const Tensor & data, const Tensor & batch_sizes, TensorList hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional) { | |
- Tensor result0; | |
- Tensor result1; | |
- Tensor result2; | |
- std::tie(result0, result1, result2) = TypeDefault::lstm_data(data, batch_sizes, hx, params, has_biases, num_layers, dropout, train, bidirectional); | |
- return std::make_tuple(std::move(result0), std::move(result1), std::move(result2)); | |
-} | |
-std::tuple<Tensor,Tensor> lstm_cell(const Tensor & input, TensorList hx, const Tensor & w_ih, const Tensor & w_hh, const Tensor & b_ih, const Tensor & b_hh) { | |
- Tensor result0; | |
- Tensor result1; | |
- std::tie(result0, result1) = TypeDefault::lstm_cell(input, hx, w_ih, w_hh, b_ih, b_hh); | |
- return std::make_tuple(std::move(result0), std::move(result1)); | |
-} | |
std::tuple<Tensor,Tensor> lstsq(const Tensor & self, const Tensor & A) { | |
auto& self_ = unpack(self, "self", 0); | |
auto& A_ = unpack(A, "A", 1); | |
@@ -21755,18 +20577,6 @@ | |
} | |
return out; | |
} | |
-Tensor margin_ranking_loss(const Tensor & input1, const Tensor & input2, const Tensor & target, double margin, int64_t reduction) { | |
- auto result = TypeDefault::margin_ranking_loss(input1, input2, target, margin, reduction); | |
- return result; | |
-} | |
-Tensor masked_fill_Scalar(const Tensor & self, const Tensor & mask, Scalar value) { | |
- auto result = TypeDefault::masked_fill_Scalar(self, mask, value); | |
- return result; | |
-} | |
-Tensor masked_fill_Tensor(const Tensor & self, const Tensor & mask, const Tensor & value) { | |
- auto result = TypeDefault::masked_fill_Tensor(self, mask, value); | |
- return result; | |
-} | |
Tensor & masked_fill__Scalar(Tensor & self, const Tensor & mask, Scalar value) { | |
auto& self_ = unpack(self, "self", 0); | |
auto& mask_ = unpack(mask, "mask", 1); | |
@@ -21851,10 +20661,6 @@ | |
} | |
return self; | |
} | |
-Tensor masked_scatter(const Tensor & self, const Tensor & mask, const Tensor & source) { | |
- auto result = TypeDefault::masked_scatter(self, mask, source); | |
- return result; | |
-} | |
Tensor & masked_scatter_(Tensor & self, const Tensor & mask, const Tensor & source) { | |
auto& self_ = unpack(self, "self", 0); | |
auto& mask_ = unpack(mask, "mask", 1); | |
@@ -21988,26 +20794,6 @@ | |
} | |
return out; | |
} | |
-Tensor matmul(const Tensor & self, const Tensor & other) { | |
- auto result = TypeDefault::matmul(self, other); | |
- return result; | |
-} | |
-Tensor & matmul_out_out(Tensor & out, const Tensor & self, const Tensor & other) { | |
- TypeDefault::matmul_out_out(out, self, other); | |
- return out; | |
-} | |
-Tensor matrix_power(const Tensor & self, int64_t n) { | |
- auto result = TypeDefault::matrix_power(self, n); | |
- return result; | |
-} | |
-Tensor matrix_rank_tol(const Tensor & self, double tol, bool symmetric) { | |
- auto result = TypeDefault::matrix_rank_tol(self, tol, symmetric); | |
- return result; | |
-} | |
-Tensor matrix_rank(const Tensor & self, bool symmetric) { | |
- auto result = TypeDefault::matrix_rank(self, symmetric); | |
- return result; | |
-} | |
std::tuple<Tensor,Tensor> max_dim(const Tensor & self, int64_t dim, bool keepdim) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<MaxBackward0> grad_fn; | |
@@ -22044,12 +20830,6 @@ | |
} | |
return std::make_tuple(std::move(values), std::move(indices)); | |
} | |
-std::tuple<Tensor,Tensor> max_names_dim(const Tensor & self, Dimname dim, bool keepdim) { | |
- Tensor values; | |
- Tensor indices; | |
- std::tie(values, indices) = TypeDefault::max_names_dim(self, dim, keepdim); | |
- return std::make_tuple(std::move(values), std::move(indices)); | |
-} | |
Tensor max_other(const Tensor & self, const Tensor & other) { | |
auto& self_ = unpack(self, "self", 0); | |
auto& other_ = unpack(other, "other", 1); | |
@@ -22167,10 +20947,6 @@ | |
} | |
return std::forward_as_tuple(max, max_values); | |
} | |
-std::tuple<Tensor &,Tensor &> max_out_names_dim_max(Tensor & max, Tensor & max_values, const Tensor & self, Dimname dim, bool keepdim) { | |
- TypeDefault::max_out_names_dim_max(max, max_values, self, dim, keepdim); | |
- return std::forward_as_tuple(max, max_values); | |
-} | |
Tensor & max_out_out(Tensor & out, const Tensor & self, const Tensor & other) { | |
auto& out_ = unpack(out, "out", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -22217,20 +20993,6 @@ | |
} | |
return out; | |
} | |
-Tensor max_pool1d(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode) { | |
- auto result = TypeDefault::max_pool1d(self, kernel_size, stride, padding, dilation, ceil_mode); | |
- return result; | |
-} | |
-std::tuple<Tensor,Tensor> max_pool1d_with_indices(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode) { | |
- Tensor result0; | |
- Tensor result1; | |
- std::tie(result0, result1) = TypeDefault::max_pool1d_with_indices(self, kernel_size, stride, padding, dilation, ceil_mode); | |
- return std::make_tuple(std::move(result0), std::move(result1)); | |
-} | |
-Tensor max_pool2d(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode) { | |
- auto result = TypeDefault::max_pool2d(self, kernel_size, stride, padding, dilation, ceil_mode); | |
- return result; | |
-} | |
std::tuple<Tensor,Tensor> max_pool2d_with_indices(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<MaxPool2DWithIndicesBackward> grad_fn; | |
@@ -22417,10 +21179,6 @@ | |
} | |
return std::forward_as_tuple(out, indices); | |
} | |
-Tensor max_pool3d(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode) { | |
- auto result = TypeDefault::max_pool3d(self, kernel_size, stride, padding, dilation, ceil_mode); | |
- return result; | |
-} | |
std::tuple<Tensor,Tensor> max_pool3d_with_indices(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<MaxPool3DWithIndicesBackward> grad_fn; | |
@@ -22978,14 +21736,6 @@ | |
} | |
return out; | |
} | |
-Tensor max_values(const Tensor & self, IntArrayRef dim, bool keepdim) { | |
- auto result = TypeDefault::max_values(self, dim, keepdim); | |
- return result; | |
-} | |
-Tensor max_values_names(const Tensor & self, DimnameList dim, bool keepdim) { | |
- auto result = TypeDefault::max_values_names(self, dim, keepdim); | |
- return result; | |
-} | |
Tensor mean(const Tensor & self, c10::optional<ScalarType> dtype) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<MeanBackward0> grad_fn; | |
@@ -23049,10 +21799,6 @@ | |
} | |
return result; | |
} | |
-Tensor mean_names_dim(const Tensor & self, DimnameList dim, bool keepdim, c10::optional<ScalarType> dtype) { | |
- auto result = TypeDefault::mean_names_dim(self, dim, keepdim, dtype); | |
- return result; | |
-} | |
Tensor & mean_out_out(Tensor & out, const Tensor & self, IntArrayRef dim, bool keepdim, c10::optional<ScalarType> dtype) { | |
auto& out_ = unpack(out, "out", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -23091,10 +21837,6 @@ | |
} | |
return out; | |
} | |
-Tensor & mean_out_names_out(Tensor & out, const Tensor & self, DimnameList dim, bool keepdim, c10::optional<ScalarType> dtype) { | |
- TypeDefault::mean_out_names_out(out, self, dim, keepdim, dtype); | |
- return out; | |
-} | |
std::tuple<Tensor,Tensor> median_dim(const Tensor & self, int64_t dim, bool keepdim) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<MedianBackward1> grad_fn; | |
@@ -23131,12 +21873,6 @@ | |
} | |
return std::make_tuple(std::move(values), std::move(indices)); | |
} | |
-std::tuple<Tensor,Tensor> median_names_dim(const Tensor & self, Dimname dim, bool keepdim) { | |
- Tensor values; | |
- Tensor indices; | |
- std::tie(values, indices) = TypeDefault::median_names_dim(self, dim, keepdim); | |
- return std::make_tuple(std::move(values), std::move(indices)); | |
-} | |
Tensor median(const Tensor & self) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<MedianBackward0> grad_fn; | |
@@ -23216,14 +21952,6 @@ | |
} | |
return std::forward_as_tuple(values, indices); | |
} | |
-std::tuple<Tensor &,Tensor &> median_out_names_dim_values(Tensor & values, Tensor & indices, const Tensor & self, Dimname dim, bool keepdim) { | |
- TypeDefault::median_out_names_dim_values(values, indices, self, dim, keepdim); | |
- return std::forward_as_tuple(values, indices); | |
-} | |
-std::vector<Tensor> meshgrid(TensorList tensors) { | |
- auto result = TypeDefault::meshgrid(tensors); | |
- return result; | |
-} | |
std::tuple<Tensor,Tensor> min_dim(const Tensor & self, int64_t dim, bool keepdim) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<MinBackward0> grad_fn; | |
@@ -23260,12 +21988,6 @@ | |
} | |
return std::make_tuple(std::move(values), std::move(indices)); | |
} | |
-std::tuple<Tensor,Tensor> min_names_dim(const Tensor & self, Dimname dim, bool keepdim) { | |
- Tensor values; | |
- Tensor indices; | |
- std::tie(values, indices) = TypeDefault::min_names_dim(self, dim, keepdim); | |
- return std::make_tuple(std::move(values), std::move(indices)); | |
-} | |
Tensor min_other(const Tensor & self, const Tensor & other) { | |
auto& self_ = unpack(self, "self", 0); | |
auto& other_ = unpack(other, "other", 1); | |
@@ -23383,10 +22105,6 @@ | |
} | |
return std::forward_as_tuple(min, min_indices); | |
} | |
-std::tuple<Tensor &,Tensor &> min_out_names_dim_min(Tensor & min, Tensor & min_indices, const Tensor & self, Dimname dim, bool keepdim) { | |
- TypeDefault::min_out_names_dim_min(min, min_indices, self, dim, keepdim); | |
- return std::forward_as_tuple(min, min_indices); | |
-} | |
Tensor & min_out_out(Tensor & out, const Tensor & self, const Tensor & other) { | |
auto& out_ = unpack(out, "out", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -23433,14 +22151,6 @@ | |
} | |
return out; | |
} | |
-Tensor min_values(const Tensor & self, IntArrayRef dim, bool keepdim) { | |
- auto result = TypeDefault::min_values(self, dim, keepdim); | |
- return result; | |
-} | |
-Tensor min_values_names(const Tensor & self, DimnameList dim, bool keepdim) { | |
- auto result = TypeDefault::min_values_names(self, dim, keepdim); | |
- return result; | |
-} | |
std::tuple<Tensor,Tensor,Tensor> miopen_batch_norm(const Tensor & input, const Tensor & weight, const Tensor & bias, const Tensor & running_mean, const Tensor & running_var, bool training, double exponential_average_factor, double epsilon) { | |
auto& input_ = unpack(input, "input", 0); | |
auto& weight_ = unpack(weight, "weight", 1); | |
@@ -24520,16 +23230,6 @@ | |
} | |
return std::make_tuple(std::move(result0), std::move(result1), std::move(result2)); | |
} | |
-Tensor mkldnn_convolution_backward_input(IntArrayRef self_size, const Tensor & grad_output, const Tensor & weight, IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups, bool bias_defined) { | |
- auto result = TypeDefault::mkldnn_convolution_backward_input(self_size, grad_output, weight, padding, stride, dilation, groups, bias_defined); | |
- return result; | |
-} | |
-std::tuple<Tensor,Tensor> mkldnn_convolution_backward_weights(IntArrayRef weight_size, const Tensor & grad_output, const Tensor & self, IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups, bool bias_defined) { | |
- Tensor result0; | |
- Tensor result1; | |
- std::tie(result0, result1) = TypeDefault::mkldnn_convolution_backward_weights(weight_size, grad_output, self, padding, stride, dilation, groups, bias_defined); | |
- return std::make_tuple(std::move(result0), std::move(result1)); | |
-} | |
Tensor mkldnn_linear(const Tensor & input, const Tensor & weight, const Tensor & bias) { | |
auto& input_ = unpack(input, "input", 0); | |
auto& weight_ = unpack(weight, "weight", 1); | |
@@ -24807,12 +23507,6 @@ | |
} | |
return std::make_tuple(std::move(values), std::move(indices)); | |
} | |
-std::tuple<Tensor,Tensor> mode_dimname(const Tensor & self, Dimname dim, bool keepdim) { | |
- Tensor values; | |
- Tensor indices; | |
- std::tie(values, indices) = TypeDefault::mode_dimname(self, dim, keepdim); | |
- return std::make_tuple(std::move(values), std::move(indices)); | |
-} | |
std::tuple<Tensor &,Tensor &> mode_out_values(Tensor & values, Tensor & indices, const Tensor & self, int64_t dim, bool keepdim) { | |
auto& values_ = unpack(values, "values", 0); | |
auto& indices_ = unpack(indices, "indices", 1); | |
@@ -24860,18 +23554,6 @@ | |
} | |
return std::forward_as_tuple(values, indices); | |
} | |
-std::tuple<Tensor &,Tensor &> mode_out_dimname_out(Tensor & values, Tensor & indices, const Tensor & self, Dimname dim, bool keepdim) { | |
- TypeDefault::mode_out_dimname_out(values, indices, self, dim, keepdim); | |
- return std::forward_as_tuple(values, indices); | |
-} | |
-Tensor movedim_intlist(const Tensor & self, IntArrayRef source, IntArrayRef destination) { | |
- auto result = TypeDefault::movedim_intlist(self, source, destination); | |
- return result; | |
-} | |
-Tensor movedim_int(const Tensor & self, int64_t source, int64_t destination) { | |
- auto result = TypeDefault::movedim_int(self, source, destination); | |
- return result; | |
-} | |
Tensor mse_loss(const Tensor & self, const Tensor & target, int64_t reduction) { | |
auto& self_ = unpack(self, "self", 0); | |
auto& target_ = unpack(target, "target", 1); | |
@@ -25470,10 +24152,6 @@ | |
} | |
return out; | |
} | |
-Tensor multilabel_margin_loss(const Tensor & self, const Tensor & target, int64_t reduction) { | |
- auto result = TypeDefault::multilabel_margin_loss(self, target, reduction); | |
- return result; | |
-} | |
Tensor multilabel_margin_loss_backward(const Tensor & grad_output, const Tensor & self, const Tensor & target, int64_t reduction, const Tensor & is_target) { | |
auto& grad_output_ = unpack(grad_output, "grad_output", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -25687,10 +24365,6 @@ | |
} | |
return std::forward_as_tuple(output, is_target); | |
} | |
-Tensor & multilabel_margin_loss_out_out(Tensor & out, const Tensor & self, const Tensor & target, int64_t reduction) { | |
- TypeDefault::multilabel_margin_loss_out_out(out, self, target, reduction); | |
- return out; | |
-} | |
Tensor multinomial(const Tensor & self, int64_t num_samples, bool replacement, c10::optional<Generator> generator) { | |
auto& self_ = unpack(self, "self", 0); | |
#ifndef NDEBUG | |
@@ -25888,14 +24562,6 @@ | |
} | |
return self; | |
} | |
-Tensor narrow(const Tensor & self, int64_t dim, int64_t start, int64_t length) { | |
- auto result = TypeDefault::narrow(self, dim, start, length); | |
- return result; | |
-} | |
-Tensor narrow_Tensor(const Tensor & self, int64_t dim, const Tensor & start, int64_t length) { | |
- auto result = TypeDefault::narrow_Tensor(self, dim, start, length); | |
- return result; | |
-} | |
Tensor narrow_copy(const Tensor & self, int64_t dim, int64_t start, int64_t length) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<NotImplemented> grad_fn; | |
@@ -26721,26 +25387,6 @@ | |
} | |
return out; | |
} | |
-Tensor new_empty(const Tensor & self, IntArrayRef size, const TensorOptions & options) { | |
- auto result = TypeDefault::new_empty(self, size, options); | |
- return result; | |
-} | |
-Tensor new_full(const Tensor & self, IntArrayRef size, Scalar fill_value, const TensorOptions & options) { | |
- auto result = TypeDefault::new_full(self, size, fill_value, options); | |
- return result; | |
-} | |
-Tensor new_zeros(const Tensor & self, IntArrayRef size, const TensorOptions & options) { | |
- auto result = TypeDefault::new_zeros(self, size, options); | |
- return result; | |
-} | |
-Tensor nll_loss(const Tensor & self, const Tensor & target, const Tensor & weight, int64_t reduction, int64_t ignore_index) { | |
- auto result = TypeDefault::nll_loss(self, target, weight, reduction, ignore_index); | |
- return result; | |
-} | |
-Tensor nll_loss2d(const Tensor & self, const Tensor & target, const Tensor & weight, int64_t reduction, int64_t ignore_index) { | |
- auto result = TypeDefault::nll_loss2d(self, target, weight, reduction, ignore_index); | |
- return result; | |
-} | |
Tensor nll_loss2d_backward(const Tensor & grad_output, const Tensor & self, const Tensor & target, const Tensor & weight, int64_t reduction, int64_t ignore_index, const Tensor & total_weight) { | |
auto& grad_output_ = unpack(grad_output, "grad_output", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -26995,10 +25641,6 @@ | |
} | |
return std::forward_as_tuple(output, total_weight); | |
} | |
-Tensor & nll_loss2d_out_out(Tensor & out, const Tensor & self, const Tensor & target, const Tensor & weight, int64_t reduction, int64_t ignore_index) { | |
- TypeDefault::nll_loss2d_out_out(out, self, target, weight, reduction, ignore_index); | |
- return out; | |
-} | |
Tensor nll_loss_backward(const Tensor & grad_output, const Tensor & self, const Tensor & target, const Tensor & weight, int64_t reduction, int64_t ignore_index, const Tensor & total_weight) { | |
auto& grad_output_ = unpack(grad_output, "grad_output", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -27253,10 +25895,6 @@ | |
} | |
return std::forward_as_tuple(output, total_weight); | |
} | |
-Tensor & nll_loss_out_out(Tensor & out, const Tensor & self, const Tensor & target, const Tensor & weight, int64_t reduction, int64_t ignore_index) { | |
- TypeDefault::nll_loss_out_out(out, self, target, weight, reduction, ignore_index); | |
- return out; | |
-} | |
Tensor nonzero(const Tensor & self) { | |
auto& self_ = unpack(self, "self", 0); | |
#ifndef NDEBUG | |
@@ -27277,10 +25915,6 @@ | |
#endif | |
return result; | |
} | |
-std::vector<Tensor> nonzero_numpy(const Tensor & self) { | |
- auto result = TypeDefault::nonzero_numpy(self); | |
- return result; | |
-} | |
Tensor & nonzero_out_out(Tensor & out, const Tensor & self) { | |
auto& out_ = unpack(out, "out", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -27445,18 +26079,6 @@ | |
} | |
return result; | |
} | |
-Tensor norm_names_ScalarOpt_dim_dtype(const Tensor & self, c10::optional<Scalar> p, DimnameList dim, bool keepdim, ScalarType dtype) { | |
- auto result = TypeDefault::norm_names_ScalarOpt_dim_dtype(self, p, dim, keepdim, dtype); | |
- return result; | |
-} | |
-Tensor norm_names_ScalarOpt_dim(const Tensor & self, c10::optional<Scalar> p, DimnameList dim, bool keepdim) { | |
- auto result = TypeDefault::norm_names_ScalarOpt_dim(self, p, dim, keepdim); | |
- return result; | |
-} | |
-Tensor norm_except_dim(const Tensor & v, int64_t pow, int64_t dim) { | |
- auto result = TypeDefault::norm_except_dim(v, pow, dim); | |
- return result; | |
-} | |
Tensor & norm_out_dtype_out(Tensor & out, const Tensor & self, c10::optional<Scalar> p, IntArrayRef dim, bool keepdim, ScalarType dtype) { | |
auto& out_ = unpack(out, "out", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -27533,14 +26155,6 @@ | |
} | |
return out; | |
} | |
-Tensor & norm_out_names_dtype_out(Tensor & out, const Tensor & self, c10::optional<Scalar> p, DimnameList dim, bool keepdim, ScalarType dtype) { | |
- TypeDefault::norm_out_names_dtype_out(out, self, p, dim, keepdim, dtype); | |
- return out; | |
-} | |
-Tensor & norm_out_names_out(Tensor & out, const Tensor & self, c10::optional<Scalar> p, DimnameList dim, bool keepdim) { | |
- TypeDefault::norm_out_names_out(out, self, p, dim, keepdim); | |
- return out; | |
-} | |
Tensor normal_Tensor_float(const Tensor & mean, double std, c10::optional<Generator> generator) { | |
auto& mean_ = unpack(mean, "mean", 0); | |
std::shared_ptr<NormalBackward1> grad_fn; | |
@@ -27637,10 +26251,6 @@ | |
} | |
return result; | |
} | |
-Tensor normal_float_float(double mean, double std, IntArrayRef size, c10::optional<Generator> generator, const TensorOptions & options) { | |
- auto result = TypeDefault::normal_float_float(mean, std, size, generator, options); | |
- return result; | |
-} | |
Tensor & normal_(Tensor & self, double mean, double std, c10::optional<Generator> generator) { | |
auto& self_ = unpack(self, "self", 0); | |
check_inplace(self); | |
@@ -27792,50 +26402,6 @@ | |
} | |
return out; | |
} | |
-Tensor & normal_out_float_float_out(Tensor & out, double mean, double std, IntArrayRef size, c10::optional<Generator> generator) { | |
- TypeDefault::normal_out_float_float_out(out, mean, std, size, generator); | |
- return out; | |
-} | |
-Tensor nuclear_norm(const Tensor & self, bool keepdim) { | |
- auto result = TypeDefault::nuclear_norm(self, keepdim); | |
- return result; | |
-} | |
-Tensor nuclear_norm_dim(const Tensor & self, IntArrayRef dim, bool keepdim) { | |
- auto result = TypeDefault::nuclear_norm_dim(self, dim, keepdim); | |
- return result; | |
-} | |
-Tensor & nuclear_norm_out_out(Tensor & out, const Tensor & self, bool keepdim) { | |
- TypeDefault::nuclear_norm_out_out(out, self, keepdim); | |
- return out; | |
-} | |
-Tensor & nuclear_norm_out_dim_out(Tensor & out, const Tensor & self, IntArrayRef dim, bool keepdim) { | |
- TypeDefault::nuclear_norm_out_dim_out(out, self, dim, keepdim); | |
- return out; | |
-} | |
-Tensor numpy_T(const Tensor & self) { | |
- auto result = TypeDefault::numpy_T(self); | |
- return result; | |
-} | |
-Tensor one_hot(const Tensor & self, int64_t num_classes) { | |
- auto result = TypeDefault::one_hot(self, num_classes); | |
- return result; | |
-} | |
-Tensor ones_names(IntArrayRef size, c10::optional<DimnameList> names, const TensorOptions & options) { | |
- auto result = TypeDefault::ones_names(size, names, options); | |
- return result; | |
-} | |
-Tensor ones(IntArrayRef size, const TensorOptions & options) { | |
- auto result = TypeDefault::ones(size, options); | |
- return result; | |
-} | |
-Tensor ones_like(const Tensor & self, const TensorOptions & options, c10::optional<MemoryFormat> memory_format) { | |
- auto result = TypeDefault::ones_like(self, options, memory_format); | |
- return result; | |
-} | |
-Tensor & ones_out_out(Tensor & out, IntArrayRef size) { | |
- TypeDefault::ones_out_out(out, size); | |
- return out; | |
-} | |
Tensor orgqr(const Tensor & self, const Tensor & input2) { | |
auto& self_ = unpack(self, "self", 0); | |
auto& input2_ = unpack(input2, "input2", 1); | |
@@ -28016,14 +26582,6 @@ | |
} | |
return out; | |
} | |
-Tensor pairwise_distance(const Tensor & x1, const Tensor & x2, double p, double eps, bool keepdim) { | |
- auto result = TypeDefault::pairwise_distance(x1, x2, p, eps, keepdim); | |
- return result; | |
-} | |
-Tensor pdist(const Tensor & self, double p) { | |
- auto result = TypeDefault::pdist(self, p); | |
- return result; | |
-} | |
Tensor permute(const Tensor & self, IntArrayRef dims) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<PermuteBackward> grad_fn; | |
@@ -28060,18 +26618,6 @@ | |
} | |
return result; | |
} | |
-Tensor pin_memory(const Tensor & self) { | |
- auto result = TypeDefault::pin_memory(self); | |
- return result; | |
-} | |
-Tensor pinverse(const Tensor & self, double rcond) { | |
- auto result = TypeDefault::pinverse(self, rcond); | |
- return result; | |
-} | |
-Tensor pixel_shuffle(const Tensor & self, int64_t upscale_factor) { | |
- auto result = TypeDefault::pixel_shuffle(self, upscale_factor); | |
- return result; | |
-} | |
Tensor poisson(const Tensor & self, c10::optional<Generator> generator) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<PoissonBackward> grad_fn; | |
@@ -28101,10 +26647,6 @@ | |
} | |
return result; | |
} | |
-Tensor poisson_nll_loss(const Tensor & input, const Tensor & target, bool log_input, bool full, double eps, int64_t reduction) { | |
- auto result = TypeDefault::poisson_nll_loss(input, target, log_input, full, eps, reduction); | |
- return result; | |
-} | |
Tensor polygamma(int64_t n, const Tensor & self) { | |
auto& self_ = unpack(self, "self", 1); | |
std::shared_ptr<PolygammaBackward> grad_fn; | |
@@ -28135,10 +26677,6 @@ | |
} | |
return result; | |
} | |
-Tensor & polygamma_(Tensor & self, int64_t n) { | |
- TypeDefault::polygamma_(self, n); | |
- return self; | |
-} | |
Tensor & polygamma_out_out(Tensor & out, int64_t n, const Tensor & self) { | |
auto& out_ = unpack(out, "out", 0); | |
auto& self_ = unpack(self, "self", 2); | |
@@ -28629,10 +27167,6 @@ | |
} | |
return result; | |
} | |
-Tensor prod_dim_Dimname(const Tensor & self, Dimname dim, bool keepdim, c10::optional<ScalarType> dtype) { | |
- auto result = TypeDefault::prod_dim_Dimname(self, dim, keepdim, dtype); | |
- return result; | |
-} | |
Tensor & prod_out_int_out(Tensor & out, const Tensor & self, int64_t dim, bool keepdim, c10::optional<ScalarType> dtype) { | |
auto& out_ = unpack(out, "out", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -28671,14 +27205,6 @@ | |
} | |
return out; | |
} | |
-Tensor & prod_out_Dimname_out(Tensor & out, const Tensor & self, Dimname dim, bool keepdim, c10::optional<ScalarType> dtype) { | |
- TypeDefault::prod_out_Dimname_out(out, self, dim, keepdim, dtype); | |
- return out; | |
-} | |
-ScalarType promote_types(ScalarType type1, ScalarType type2) { | |
- auto result = TypeDefault::promote_types(type1, type2); | |
- return result; | |
-} | |
Tensor & put_(Tensor & self, const Tensor & index, const Tensor & source, bool accumulate) { | |
auto& self_ = unpack(self, "self", 0); | |
auto& index_ = unpack(index, "index", 1); | |
@@ -29108,16 +27634,6 @@ | |
} | |
return result; | |
} | |
-Tensor quantized_gru_cell(const Tensor & input, const Tensor & hx, const Tensor & w_ih, const Tensor & w_hh, const Tensor & b_ih, const Tensor & b_hh, const Tensor & packed_ih, const Tensor & packed_hh, const Tensor & col_offsets_ih, const Tensor & col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh) { | |
- auto result = TypeDefault::quantized_gru_cell(input, hx, w_ih, w_hh, b_ih, b_hh, packed_ih, packed_hh, col_offsets_ih, col_offsets_hh, scale_ih, scale_hh, zero_point_ih, zero_point_hh); | |
- return result; | |
-} | |
-std::tuple<Tensor,Tensor> quantized_lstm_cell(const Tensor & input, TensorList hx, const Tensor & w_ih, const Tensor & w_hh, const Tensor & b_ih, const Tensor & b_hh, const Tensor & packed_ih, const Tensor & packed_hh, const Tensor & col_offsets_ih, const Tensor & col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh) { | |
- Tensor result0; | |
- Tensor result1; | |
- std::tie(result0, result1) = TypeDefault::quantized_lstm_cell(input, hx, w_ih, w_hh, b_ih, b_hh, packed_ih, packed_hh, col_offsets_ih, col_offsets_hh, scale_ih, scale_hh, zero_point_ih, zero_point_hh); | |
- return std::make_tuple(std::move(result0), std::move(result1)); | |
-} | |
Tensor quantized_max_pool2d(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<NotImplemented> grad_fn; | |
@@ -29146,14 +27662,6 @@ | |
} | |
return result; | |
} | |
-Tensor quantized_rnn_relu_cell(const Tensor & input, const Tensor & hx, const Tensor & w_ih, const Tensor & w_hh, const Tensor & b_ih, const Tensor & b_hh, const Tensor & packed_ih, const Tensor & packed_hh, const Tensor & col_offsets_ih, const Tensor & col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh) { | |
- auto result = TypeDefault::quantized_rnn_relu_cell(input, hx, w_ih, w_hh, b_ih, b_hh, packed_ih, packed_hh, col_offsets_ih, col_offsets_hh, scale_ih, scale_hh, zero_point_ih, zero_point_hh); | |
- return result; | |
-} | |
-Tensor quantized_rnn_tanh_cell(const Tensor & input, const Tensor & hx, const Tensor & w_ih, const Tensor & w_hh, const Tensor & b_ih, const Tensor & b_hh, const Tensor & packed_ih, const Tensor & packed_hh, const Tensor & col_offsets_ih, const Tensor & col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh) { | |
- auto result = TypeDefault::quantized_rnn_tanh_cell(input, hx, w_ih, w_hh, b_ih, b_hh, packed_ih, packed_hh, col_offsets_ih, col_offsets_hh, scale_ih, scale_hh, zero_point_ih, zero_point_hh); | |
- return result; | |
-} | |
Tensor rad2deg(const Tensor & self) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<Rad2DegBackward> grad_fn; | |
@@ -29249,102 +27757,6 @@ | |
} | |
return out; | |
} | |
-Tensor rand_names(IntArrayRef size, c10::optional<DimnameList> names, const TensorOptions & options) { | |
- auto result = TypeDefault::rand_names(size, names, options); | |
- return result; | |
-} | |
-Tensor rand_generator_with_names(IntArrayRef size, c10::optional<Generator> generator, c10::optional<DimnameList> names, const TensorOptions & options) { | |
- auto result = TypeDefault::rand_generator_with_names(size, generator, names, options); | |
- return result; | |
-} | |
-Tensor rand(IntArrayRef size, const TensorOptions & options) { | |
- auto result = TypeDefault::rand(size, options); | |
- return result; | |
-} | |
-Tensor rand_generator(IntArrayRef size, c10::optional<Generator> generator, const TensorOptions & options) { | |
- auto result = TypeDefault::rand_generator(size, generator, options); | |
- return result; | |
-} | |
-Tensor rand_like(const Tensor & self, const TensorOptions & options, c10::optional<MemoryFormat> memory_format) { | |
- auto result = TypeDefault::rand_like(self, options, memory_format); | |
- return result; | |
-} | |
-Tensor & rand_out_out(Tensor & out, IntArrayRef size) { | |
- TypeDefault::rand_out_out(out, size); | |
- return out; | |
-} | |
-Tensor & rand_out_generator_out(Tensor & out, IntArrayRef size, c10::optional<Generator> generator) { | |
- TypeDefault::rand_out_generator_out(out, size, generator); | |
- return out; | |
-} | |
-Tensor randint(int64_t high, IntArrayRef size, const TensorOptions & options) { | |
- auto result = TypeDefault::randint(high, size, options); | |
- return result; | |
-} | |
-Tensor randint_generator(int64_t high, IntArrayRef size, c10::optional<Generator> generator, const TensorOptions & options) { | |
- auto result = TypeDefault::randint_generator(high, size, generator, options); | |
- return result; | |
-} | |
-Tensor randint_low(int64_t low, int64_t high, IntArrayRef size, const TensorOptions & options) { | |
- auto result = TypeDefault::randint_low(low, high, size, options); | |
- return result; | |
-} | |
-Tensor randint_low_generator(int64_t low, int64_t high, IntArrayRef size, c10::optional<Generator> generator, const TensorOptions & options) { | |
- auto result = TypeDefault::randint_low_generator(low, high, size, generator, options); | |
- return result; | |
-} | |
-Tensor randint_like(const Tensor & self, int64_t high, const TensorOptions & options, c10::optional<MemoryFormat> memory_format) { | |
- auto result = TypeDefault::randint_like(self, high, options, memory_format); | |
- return result; | |
-} | |
-Tensor randint_like_low_dtype(const Tensor & self, int64_t low, int64_t high, const TensorOptions & options, c10::optional<MemoryFormat> memory_format) { | |
- auto result = TypeDefault::randint_like_low_dtype(self, low, high, options, memory_format); | |
- return result; | |
-} | |
-Tensor & randint_out_out(Tensor & out, int64_t high, IntArrayRef size) { | |
- TypeDefault::randint_out_out(out, high, size); | |
- return out; | |
-} | |
-Tensor & randint_out_generator_out(Tensor & out, int64_t high, IntArrayRef size, c10::optional<Generator> generator) { | |
- TypeDefault::randint_out_generator_out(out, high, size, generator); | |
- return out; | |
-} | |
-Tensor & randint_out_low_out(Tensor & out, int64_t low, int64_t high, IntArrayRef size) { | |
- TypeDefault::randint_out_low_out(out, low, high, size); | |
- return out; | |
-} | |
-Tensor & randint_out_low_generator_out(Tensor & out, int64_t low, int64_t high, IntArrayRef size, c10::optional<Generator> generator) { | |
- TypeDefault::randint_out_low_generator_out(out, low, high, size, generator); | |
- return out; | |
-} | |
-Tensor randn(IntArrayRef size, const TensorOptions & options) { | |
- auto result = TypeDefault::randn(size, options); | |
- return result; | |
-} | |
-Tensor randn_generator(IntArrayRef size, c10::optional<Generator> generator, const TensorOptions & options) { | |
- auto result = TypeDefault::randn_generator(size, generator, options); | |
- return result; | |
-} | |
-Tensor randn_names(IntArrayRef size, c10::optional<DimnameList> names, const TensorOptions & options) { | |
- auto result = TypeDefault::randn_names(size, names, options); | |
- return result; | |
-} | |
-Tensor randn_generator_with_names(IntArrayRef size, c10::optional<Generator> generator, c10::optional<DimnameList> names, const TensorOptions & options) { | |
- auto result = TypeDefault::randn_generator_with_names(size, generator, names, options); | |
- return result; | |
-} | |
-Tensor randn_like(const Tensor & self, const TensorOptions & options, c10::optional<MemoryFormat> memory_format) { | |
- auto result = TypeDefault::randn_like(self, options, memory_format); | |
- return result; | |
-} | |
-Tensor & randn_out_out(Tensor & out, IntArrayRef size) { | |
- TypeDefault::randn_out_out(out, size); | |
- return out; | |
-} | |
-Tensor & randn_out_generator_out(Tensor & out, IntArrayRef size, c10::optional<Generator> generator) { | |
- TypeDefault::randn_out_generator_out(out, size, generator); | |
- return out; | |
-} | |
Tensor & random__from(Tensor & self, int64_t from, c10::optional<int64_t> to, c10::optional<Generator> generator) { | |
auto& self_ = unpack(self, "self", 0); | |
check_inplace(self); | |
@@ -29432,18 +27844,6 @@ | |
} | |
return self; | |
} | |
-Tensor randperm(int64_t n, const TensorOptions & options) { | |
- auto result = TypeDefault::randperm(n, options); | |
- return result; | |
-} | |
-Tensor randperm_generator(int64_t n, c10::optional<Generator> generator, const TensorOptions & options) { | |
- auto result = TypeDefault::randperm_generator(n, generator, options); | |
- return result; | |
-} | |
-Tensor & randperm_out_out(Tensor & out, int64_t n) { | |
- TypeDefault::randperm_out_out(out, n); | |
- return out; | |
-} | |
Tensor & randperm_out_generator_out(Tensor & out, int64_t n, c10::optional<Generator> generator) { | |
auto& out_ = unpack(out, "out", 0); | |
#ifndef NDEBUG | |
@@ -29464,14 +27864,6 @@ | |
increment_version(out); | |
return out; | |
} | |
-Tensor range_step(Scalar start, Scalar end, Scalar step, const TensorOptions & options) { | |
- auto result = TypeDefault::range_step(start, end, step, options); | |
- return result; | |
-} | |
-Tensor range(Scalar start, Scalar end, const TensorOptions & options) { | |
- auto result = TypeDefault::range(start, end, options); | |
- return result; | |
-} | |
Tensor & range_out_out(Tensor & out, Scalar start, Scalar end, Scalar step) { | |
auto& out_ = unpack(out, "out", 0); | |
#ifndef NDEBUG | |
@@ -29492,10 +27884,6 @@ | |
increment_version(out); | |
return out; | |
} | |
-Tensor real(const Tensor & self) { | |
- auto result = TypeDefault::real(self); | |
- return result; | |
-} | |
Tensor reciprocal(const Tensor & self) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<ReciprocalBackward> grad_fn; | |
@@ -29597,10 +27985,6 @@ | |
} | |
return out; | |
} | |
-Tensor refine_names(const Tensor & self, DimnameList names) { | |
- auto result = TypeDefault::refine_names(self, names); | |
- return result; | |
-} | |
Tensor reflection_pad1d(const Tensor & self, IntArrayRef padding) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<ReflectionPad1DBackward> grad_fn; | |
@@ -30182,14 +28566,6 @@ | |
} | |
return out; | |
} | |
-Tensor rename(const Tensor & self, c10::optional<DimnameList> names) { | |
- auto result = TypeDefault::rename(self, names); | |
- return result; | |
-} | |
-Tensor & rename_(Tensor & self, c10::optional<DimnameList> names) { | |
- TypeDefault::rename_(self, names); | |
- return self; | |
-} | |
Tensor renorm(const Tensor & self, Scalar p, int64_t dim, Scalar maxnorm) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<RenormBackward> grad_fn; | |
@@ -30351,14 +28727,6 @@ | |
} | |
return result; | |
} | |
-Tensor repeat_interleave_self_Tensor(const Tensor & self, const Tensor & repeats, c10::optional<int64_t> dim) { | |
- auto result = TypeDefault::repeat_interleave_self_Tensor(self, repeats, dim); | |
- return result; | |
-} | |
-Tensor repeat_interleave_self_int(const Tensor & self, int64_t repeats, c10::optional<int64_t> dim) { | |
- auto result = TypeDefault::repeat_interleave_self_int(self, repeats, dim); | |
- return result; | |
-} | |
Tensor replication_pad1d(const Tensor & self, IntArrayRef padding) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<ReplicationPad1DBackward> grad_fn; | |
@@ -30815,66 +29183,6 @@ | |
} | |
return out; | |
} | |
-Tensor reshape(const Tensor & self, IntArrayRef shape) { | |
- auto result = TypeDefault::reshape(self, shape); | |
- return result; | |
-} | |
-Tensor reshape_as(const Tensor & self, const Tensor & other) { | |
- auto result = TypeDefault::reshape_as(self, other); | |
- return result; | |
-} | |
-ScalarType result_type_Tensor(const Tensor & tensor, const Tensor & other) { | |
- auto result = TypeDefault::result_type_Tensor(tensor, other); | |
- return result; | |
-} | |
-ScalarType result_type_Scalar(const Tensor & tensor, Scalar other) { | |
- auto result = TypeDefault::result_type_Scalar(tensor, other); | |
- return result; | |
-} | |
-ScalarType result_type_Scalar_Tensor(Scalar scalar, const Tensor & tensor) { | |
- auto result = TypeDefault::result_type_Scalar_Tensor(scalar, tensor); | |
- return result; | |
-} | |
-ScalarType result_type_Scalar_Scalar(Scalar scalar1, Scalar scalar2) { | |
- auto result = TypeDefault::result_type_Scalar_Scalar(scalar1, scalar2); | |
- return result; | |
-} | |
-Tensor rfft(const Tensor & self, int64_t signal_ndim, bool normalized, bool onesided) { | |
- auto result = TypeDefault::rfft(self, signal_ndim, normalized, onesided); | |
- return result; | |
-} | |
-std::tuple<Tensor,Tensor> rnn_relu_input(const Tensor & input, const Tensor & hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first) { | |
- Tensor result0; | |
- Tensor result1; | |
- std::tie(result0, result1) = TypeDefault::rnn_relu_input(input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first); | |
- return std::make_tuple(std::move(result0), std::move(result1)); | |
-} | |
-std::tuple<Tensor,Tensor> rnn_relu_data(const Tensor & data, const Tensor & batch_sizes, const Tensor & hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional) { | |
- Tensor result0; | |
- Tensor result1; | |
- std::tie(result0, result1) = TypeDefault::rnn_relu_data(data, batch_sizes, hx, params, has_biases, num_layers, dropout, train, bidirectional); | |
- return std::make_tuple(std::move(result0), std::move(result1)); | |
-} | |
-Tensor rnn_relu_cell(const Tensor & input, const Tensor & hx, const Tensor & w_ih, const Tensor & w_hh, const Tensor & b_ih, const Tensor & b_hh) { | |
- auto result = TypeDefault::rnn_relu_cell(input, hx, w_ih, w_hh, b_ih, b_hh); | |
- return result; | |
-} | |
-std::tuple<Tensor,Tensor> rnn_tanh_input(const Tensor & input, const Tensor & hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first) { | |
- Tensor result0; | |
- Tensor result1; | |
- std::tie(result0, result1) = TypeDefault::rnn_tanh_input(input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first); | |
- return std::make_tuple(std::move(result0), std::move(result1)); | |
-} | |
-std::tuple<Tensor,Tensor> rnn_tanh_data(const Tensor & data, const Tensor & batch_sizes, const Tensor & hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional) { | |
- Tensor result0; | |
- Tensor result1; | |
- std::tie(result0, result1) = TypeDefault::rnn_tanh_data(data, batch_sizes, hx, params, has_biases, num_layers, dropout, train, bidirectional); | |
- return std::make_tuple(std::move(result0), std::move(result1)); | |
-} | |
-Tensor rnn_tanh_cell(const Tensor & input, const Tensor & hx, const Tensor & w_ih, const Tensor & w_hh, const Tensor & b_ih, const Tensor & b_hh) { | |
- auto result = TypeDefault::rnn_tanh_cell(input, hx, w_ih, w_hh, b_ih, b_hh); | |
- return result; | |
-} | |
Tensor roll(const Tensor & self, IntArrayRef shifts, IntArrayRef dims) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<RollBackward> grad_fn; | |
@@ -31030,14 +29338,6 @@ | |
} | |
return out; | |
} | |
-Tensor rrelu(const Tensor & self, Scalar lower, Scalar upper, bool training, c10::optional<Generator> generator) { | |
- auto result = TypeDefault::rrelu(self, lower, upper, training, generator); | |
- return result; | |
-} | |
-Tensor & rrelu_(Tensor & self, Scalar lower, Scalar upper, bool training, c10::optional<Generator> generator) { | |
- TypeDefault::rrelu_(self, lower, upper, training, generator); | |
- return self; | |
-} | |
Tensor rrelu_with_noise(const Tensor & self, const Tensor & noise, Scalar lower, Scalar upper, bool training, c10::optional<Generator> generator) { | |
auto& self_ = unpack(self, "self", 0); | |
auto& noise_ = unpack(noise, "noise", 1); | |
@@ -31388,26 +29688,6 @@ | |
} | |
return result; | |
} | |
-Tensor scalar_tensor(Scalar s, const TensorOptions & options) { | |
- auto result = TypeDefault::scalar_tensor(s, options); | |
- return result; | |
-} | |
-Tensor scatter_src(const Tensor & self, int64_t dim, const Tensor & index, const Tensor & src) { | |
- auto result = TypeDefault::scatter_src(self, dim, index, src); | |
- return result; | |
-} | |
-Tensor scatter_value(const Tensor & self, int64_t dim, const Tensor & index, Scalar value) { | |
- auto result = TypeDefault::scatter_value(self, dim, index, value); | |
- return result; | |
-} | |
-Tensor scatter_dimname_src(const Tensor & self, Dimname dim, const Tensor & index, const Tensor & src) { | |
- auto result = TypeDefault::scatter_dimname_src(self, dim, index, src); | |
- return result; | |
-} | |
-Tensor scatter_dimname_value(const Tensor & self, Dimname dim, const Tensor & index, Scalar value) { | |
- auto result = TypeDefault::scatter_dimname_value(self, dim, index, value); | |
- return result; | |
-} | |
Tensor & scatter__src(Tensor & self, int64_t dim, const Tensor & index, const Tensor & src) { | |
auto& self_ = unpack(self, "self", 0); | |
auto& index_ = unpack(index, "index", 2); | |
@@ -31576,14 +29856,6 @@ | |
} | |
return self; | |
} | |
-Tensor scatter_add(const Tensor & self, int64_t dim, const Tensor & index, const Tensor & src) { | |
- auto result = TypeDefault::scatter_add(self, dim, index, src); | |
- return result; | |
-} | |
-Tensor scatter_add_dimname(const Tensor & self, Dimname dim, const Tensor & index, const Tensor & src) { | |
- auto result = TypeDefault::scatter_add_dimname(self, dim, index, src); | |
- return result; | |
-} | |
Tensor & scatter_add_(Tensor & self, int64_t dim, const Tensor & index, const Tensor & src) { | |
auto& self_ = unpack(self, "self", 0); | |
auto& index_ = unpack(index, "index", 2); | |
@@ -31743,10 +30015,6 @@ | |
} | |
return out; | |
} | |
-Tensor select_Dimname(const Tensor & self, Dimname dim, int64_t index) { | |
- auto result = TypeDefault::select_Dimname(self, dim, index); | |
- return result; | |
-} | |
Tensor select_int(const Tensor & self, int64_t dim, int64_t index) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<SelectBackward> grad_fn; | |
@@ -31784,14 +30052,6 @@ | |
} | |
return result; | |
} | |
-Tensor selu(const Tensor & self) { | |
- auto result = TypeDefault::selu(self); | |
- return result; | |
-} | |
-Tensor & selu_(Tensor & self) { | |
- TypeDefault::selu_(self); | |
- return self; | |
-} | |
Tensor & set__source_Storage(Tensor & self, Storage source) { | |
auto& self_ = unpack(self, "self", 0); | |
check_inplace(self); | |
@@ -32178,10 +30438,6 @@ | |
} | |
return out; | |
} | |
-Tensor signbit(const Tensor & self) { | |
- auto result = TypeDefault::signbit(self); | |
- return result; | |
-} | |
Tensor & signbit_out_out(Tensor & out, const Tensor & self) { | |
auto& out_ = unpack(out, "out", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -32278,10 +30534,6 @@ | |
} | |
return self; | |
} | |
-Tensor silu_backward(const Tensor & grad_output, const Tensor & self) { | |
- auto result = TypeDefault::silu_backward(grad_output, self); | |
- return result; | |
-} | |
Tensor & silu_out_out(Tensor & out, const Tensor & self) { | |
auto& out_ = unpack(out, "out", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -32514,14 +30766,6 @@ | |
} | |
return out; | |
} | |
-int64_t size_int(const Tensor & self, int64_t dim) { | |
- auto result = TypeDefault::size_int(self, dim); | |
- return result; | |
-} | |
-int64_t size_Dimname(const Tensor & self, Dimname dim) { | |
- auto result = TypeDefault::size_Dimname(self, dim); | |
- return result; | |
-} | |
Tensor slice_Tensor(const Tensor & self, int64_t dim, int64_t start, int64_t end, int64_t step) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<SliceBackward> grad_fn; | |
@@ -32596,10 +30840,6 @@ | |
} | |
return std::make_tuple(std::move(sign), std::move(logabsdet)); | |
} | |
-Tensor slow_conv3d(const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, const Tensor & bias, IntArrayRef stride, IntArrayRef padding) { | |
- auto result = TypeDefault::slow_conv3d(self, weight, kernel_size, bias, stride, padding); | |
- return result; | |
-} | |
std::tuple<Tensor,Tensor,Tensor> slow_conv3d_backward_output_mask(const Tensor & grad_output, const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, const Tensor & finput, const Tensor & fgrad_input, std::array<bool,3> output_mask) { | |
auto& grad_output_ = unpack(grad_output, "grad_output", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -32886,10 +31126,6 @@ | |
} | |
return std::forward_as_tuple(output, finput, fgrad_input); | |
} | |
-Tensor & slow_conv3d_out_out(Tensor & out, const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, const Tensor & bias, IntArrayRef stride, IntArrayRef padding) { | |
- TypeDefault::slow_conv3d_out_out(out, self, weight, kernel_size, bias, stride, padding); | |
- return out; | |
-} | |
Tensor slow_conv_dilated2d(const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, const Tensor & bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation) { | |
auto& self_ = unpack(self, "self", 0); | |
auto& weight_ = unpack(weight, "weight", 1); | |
@@ -33626,10 +31862,6 @@ | |
} | |
return out; | |
} | |
-Tensor smm(const Tensor & self, const Tensor & mat2) { | |
- auto result = TypeDefault::smm(self, mat2); | |
- return result; | |
-} | |
Tensor smooth_l1_loss(const Tensor & self, const Tensor & target, int64_t reduction) { | |
auto& self_ = unpack(self, "self", 0); | |
auto& target_ = unpack(target, "target", 1); | |
@@ -34008,14 +32240,6 @@ | |
} | |
return out; | |
} | |
-Tensor softmax_int(const Tensor & self, int64_t dim, c10::optional<ScalarType> dtype) { | |
- auto result = TypeDefault::softmax_int(self, dim, dtype); | |
- return result; | |
-} | |
-Tensor softmax_Dimname(const Tensor & self, Dimname dim, c10::optional<ScalarType> dtype) { | |
- auto result = TypeDefault::softmax_Dimname(self, dim, dtype); | |
- return result; | |
-} | |
Tensor softplus(const Tensor & self, Scalar beta, Scalar threshold) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<SoftplusBackward> grad_fn; | |
@@ -34476,12 +32700,6 @@ | |
} | |
return std::make_tuple(std::move(values), std::move(indices)); | |
} | |
-std::tuple<Tensor,Tensor> sort_dimname(const Tensor & self, Dimname dim, bool descending) { | |
- Tensor values; | |
- Tensor indices; | |
- std::tie(values, indices) = TypeDefault::sort_dimname(self, dim, descending); | |
- return std::make_tuple(std::move(values), std::move(indices)); | |
-} | |
std::tuple<Tensor &,Tensor &> sort_out_values(Tensor & values, Tensor & indices, const Tensor & self, int64_t dim, bool descending) { | |
auto& values_ = unpack(values, "values", 0); | |
auto& indices_ = unpack(indices, "indices", 1); | |
@@ -34529,22 +32747,6 @@ | |
} | |
return std::forward_as_tuple(values, indices); | |
} | |
-std::tuple<Tensor &,Tensor &> sort_out_dimname_values(Tensor & values, Tensor & indices, const Tensor & self, Dimname dim, bool descending) { | |
- TypeDefault::sort_out_dimname_values(values, indices, self, dim, descending); | |
- return std::forward_as_tuple(values, indices); | |
-} | |
-Tensor sparse_coo_tensor_size(IntArrayRef size, const TensorOptions & options) { | |
- auto result = TypeDefault::sparse_coo_tensor_size(size, options); | |
- return result; | |
-} | |
-Tensor sparse_coo_tensor_indices(const Tensor & indices, const Tensor & values, const TensorOptions & options) { | |
- auto result = TypeDefault::sparse_coo_tensor_indices(indices, values, options); | |
- return result; | |
-} | |
-Tensor sparse_coo_tensor_indices_size(const Tensor & indices, const Tensor & values, IntArrayRef size, const TensorOptions & options) { | |
- auto result = TypeDefault::sparse_coo_tensor_indices_size(indices, values, size, options); | |
- return result; | |
-} | |
int64_t sparse_dim(const Tensor & self) { | |
auto& self_ = unpack(self, "self", 0); | |
#ifndef NDEBUG | |
@@ -34825,14 +33027,6 @@ | |
} | |
return out; | |
} | |
-Tensor square(const Tensor & self) { | |
- auto result = TypeDefault::square(self); | |
- return result; | |
-} | |
-Tensor & square_(Tensor & self) { | |
- TypeDefault::square_(self); | |
- return self; | |
-} | |
Tensor squeeze(const Tensor & self) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<SqueezeBackward0> grad_fn; | |
@@ -34904,10 +33098,6 @@ | |
} | |
return result; | |
} | |
-Tensor squeeze_dimname(const Tensor & self, Dimname dim) { | |
- auto result = TypeDefault::squeeze_dimname(self, dim); | |
- return result; | |
-} | |
Tensor & squeeze_(Tensor & self) { | |
auto& self_ = unpack(self, "self", 0); | |
check_inplace(self); | |
@@ -34969,14 +33159,6 @@ | |
} | |
return self; | |
} | |
-Tensor & squeeze__dimname(Tensor & self, Dimname dim) { | |
- TypeDefault::squeeze__dimname(self, dim); | |
- return self; | |
-} | |
-Tensor sspaddmm(const Tensor & self, const Tensor & mat1, const Tensor & mat2, Scalar beta, Scalar alpha) { | |
- auto result = TypeDefault::sspaddmm(self, mat1, mat2, beta, alpha); | |
- return result; | |
-} | |
Tensor & sspaddmm_out_out(Tensor & out, const Tensor & self, const Tensor & mat1, const Tensor & mat2, Scalar beta, Scalar alpha) { | |
auto& out_ = unpack(out, "out", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -35184,10 +33366,6 @@ | |
} | |
return result; | |
} | |
-Tensor std_names_dim(const Tensor & self, DimnameList dim, bool unbiased, bool keepdim) { | |
- auto result = TypeDefault::std_names_dim(self, dim, unbiased, keepdim); | |
- return result; | |
-} | |
std::tuple<Tensor,Tensor> std_mean(const Tensor & self, bool unbiased) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<StdMeanBackward1> grad_fn; | |
@@ -35262,12 +33440,6 @@ | |
} | |
return std::make_tuple(std::move(result0), std::move(result1)); | |
} | |
-std::tuple<Tensor,Tensor> std_mean_names_dim(const Tensor & self, DimnameList dim, bool unbiased, bool keepdim) { | |
- Tensor result0; | |
- Tensor result1; | |
- std::tie(result0, result1) = TypeDefault::std_mean_names_dim(self, dim, unbiased, keepdim); | |
- return std::make_tuple(std::move(result0), std::move(result1)); | |
-} | |
Tensor & std_out_out(Tensor & out, const Tensor & self, IntArrayRef dim, bool unbiased, bool keepdim) { | |
auto& out_ = unpack(out, "out", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -35306,22 +33478,6 @@ | |
} | |
return out; | |
} | |
-Tensor & std_out_names_out(Tensor & out, const Tensor & self, DimnameList dim, bool unbiased, bool keepdim) { | |
- TypeDefault::std_out_names_out(out, self, dim, unbiased, keepdim); | |
- return out; | |
-} | |
-Tensor stft(const Tensor & self, int64_t n_fft, c10::optional<int64_t> hop_length, c10::optional<int64_t> win_length, const Tensor & window, bool normalized, bool onesided) { | |
- auto result = TypeDefault::stft(self, n_fft, hop_length, win_length, window, normalized, onesided); | |
- return result; | |
-} | |
-int64_t stride_int(const Tensor & self, int64_t dim) { | |
- auto result = TypeDefault::stride_int(self, dim); | |
- return result; | |
-} | |
-int64_t stride_Dimname(const Tensor & self, Dimname dim) { | |
- auto result = TypeDefault::stride_Dimname(self, dim); | |
- return result; | |
-} | |
Tensor sub_Tensor(const Tensor & self, const Tensor & other, Scalar alpha) { | |
auto& self_ = unpack(self, "self", 0); | |
auto& other_ = unpack(other, "other", 1); | |
@@ -35560,10 +33716,6 @@ | |
} | |
return result; | |
} | |
-Tensor sum_dim_DimnameList(const Tensor & self, DimnameList dim, bool keepdim, c10::optional<ScalarType> dtype) { | |
- auto result = TypeDefault::sum_dim_DimnameList(self, dim, keepdim, dtype); | |
- return result; | |
-} | |
Tensor & sum_out_IntList_out(Tensor & out, const Tensor & self, IntArrayRef dim, bool keepdim, c10::optional<ScalarType> dtype) { | |
auto& out_ = unpack(out, "out", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -35602,14 +33754,6 @@ | |
} | |
return out; | |
} | |
-Tensor & sum_out_DimnameList_out(Tensor & out, const Tensor & self, DimnameList dim, bool keepdim, c10::optional<ScalarType> dtype) { | |
- TypeDefault::sum_out_DimnameList_out(out, self, dim, keepdim, dtype); | |
- return out; | |
-} | |
-Tensor sum_to_size(const Tensor & self, IntArrayRef size) { | |
- auto result = TypeDefault::sum_to_size(self, size); | |
- return result; | |
-} | |
std::tuple<Tensor,Tensor,Tensor> svd(const Tensor & self, bool some, bool compute_uv) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<SvdBackward> grad_fn; | |
@@ -36222,14 +34366,6 @@ | |
} | |
return out; | |
} | |
-Tensor tensordot(const Tensor & self, const Tensor & other, IntArrayRef dims_self, IntArrayRef dims_other) { | |
- auto result = TypeDefault::tensordot(self, other, dims_self, dims_other); | |
- return result; | |
-} | |
-Tensor thnn_conv2d(const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, const Tensor & bias, IntArrayRef stride, IntArrayRef padding) { | |
- auto result = TypeDefault::thnn_conv2d(self, weight, kernel_size, bias, stride, padding); | |
- return result; | |
-} | |
std::tuple<Tensor,Tensor,Tensor> thnn_conv2d_backward_output_mask(const Tensor & grad_output, const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, const Tensor & finput, const Tensor & fgrad_input, std::array<bool,3> output_mask) { | |
auto& grad_output_ = unpack(grad_output, "grad_output", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -36516,14 +34652,6 @@ | |
} | |
return std::forward_as_tuple(output, finput, fgrad_input); | |
} | |
-Tensor & thnn_conv2d_out_out(Tensor & out, const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, const Tensor & bias, IntArrayRef stride, IntArrayRef padding) { | |
- TypeDefault::thnn_conv2d_out_out(out, self, weight, kernel_size, bias, stride, padding); | |
- return out; | |
-} | |
-Tensor thnn_conv_depthwise2d(const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, const Tensor & bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation) { | |
- auto result = TypeDefault::thnn_conv_depthwise2d(self, weight, kernel_size, bias, stride, padding, dilation); | |
- return result; | |
-} | |
std::tuple<Tensor,Tensor> thnn_conv_depthwise2d_backward_output_mask(const Tensor & grad_output, const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, std::array<bool,2> output_mask) { | |
auto& grad_output_ = unpack(grad_output, "grad_output", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -36744,10 +34872,6 @@ | |
} | |
return out; | |
} | |
-Tensor & thnn_conv_depthwise2d_out_out(Tensor & out, const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, const Tensor & bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation) { | |
- TypeDefault::thnn_conv_depthwise2d_out_out(out, self, weight, kernel_size, bias, stride, padding, dilation); | |
- return out; | |
-} | |
Tensor threshold(const Tensor & self, Scalar threshold, Scalar value) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<ThresholdBackward0> grad_fn; | |
@@ -36887,22 +35011,6 @@ | |
} | |
return out; | |
} | |
-Tensor to_dtype_layout(const Tensor & self, const TensorOptions & options, bool non_blocking, bool copy, c10::optional<MemoryFormat> memory_format) { | |
- auto result = TypeDefault::to_dtype_layout(self, options, non_blocking, copy, memory_format); | |
- return result; | |
-} | |
-Tensor to_device(const Tensor & self, Device device, ScalarType dtype, bool non_blocking, bool copy, c10::optional<MemoryFormat> memory_format) { | |
- auto result = TypeDefault::to_device(self, device, dtype, non_blocking, copy, memory_format); | |
- return result; | |
-} | |
-Tensor to_dtype(const Tensor & self, ScalarType dtype, bool non_blocking, bool copy, c10::optional<MemoryFormat> memory_format) { | |
- auto result = TypeDefault::to_dtype(self, dtype, non_blocking, copy, memory_format); | |
- return result; | |
-} | |
-Tensor to_other(const Tensor & self, const Tensor & other, bool non_blocking, bool copy, c10::optional<MemoryFormat> memory_format) { | |
- auto result = TypeDefault::to_other(self, other, non_blocking, copy, memory_format); | |
- return result; | |
-} | |
Tensor to_dense(const Tensor & self) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<ToDenseBackward> grad_fn; | |
@@ -36932,10 +35040,6 @@ | |
} | |
return result; | |
} | |
-Tensor to_dense_backward(const Tensor & grad, const Tensor & input) { | |
- auto result = TypeDefault::to_dense_backward(grad, input); | |
- return result; | |
-} | |
Tensor to_mkldnn(const Tensor & self) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<ToMkldnnBackward> grad_fn; | |
@@ -36965,10 +35069,6 @@ | |
} | |
return result; | |
} | |
-Tensor to_mkldnn_backward(const Tensor & grad, const Tensor & input) { | |
- auto result = TypeDefault::to_mkldnn_backward(grad, input); | |
- return result; | |
-} | |
Tensor to_sparse_sparse_dim(const Tensor & self, int64_t sparse_dim) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<NotImplemented> grad_fn; | |
@@ -37172,10 +35272,6 @@ | |
} | |
return result; | |
} | |
-Tensor transpose_Dimname(const Tensor & self, Dimname dim0, Dimname dim1) { | |
- auto result = TypeDefault::transpose_Dimname(self, dim0, dim1); | |
- return result; | |
-} | |
Tensor & transpose_(Tensor & self, int64_t dim0, int64_t dim1) { | |
auto& self_ = unpack(self, "self", 0); | |
check_inplace(self); | |
@@ -37207,14 +35303,6 @@ | |
} | |
return self; | |
} | |
-Tensor trapz_x(const Tensor & y, const Tensor & x, int64_t dim) { | |
- auto result = TypeDefault::trapz_x(y, x, dim); | |
- return result; | |
-} | |
-Tensor trapz_dx(const Tensor & y, double dx, int64_t dim) { | |
- auto result = TypeDefault::trapz_dx(y, dx, dim); | |
- return result; | |
-} | |
std::tuple<Tensor,Tensor> triangular_solve(const Tensor & self, const Tensor & A, bool upper, bool transpose, bool unitriangular) { | |
auto& self_ = unpack(self, "self", 0); | |
auto& A_ = unpack(A, "A", 1); | |
@@ -37422,10 +35510,6 @@ | |
} | |
return out; | |
} | |
-Tensor triplet_margin_loss(const Tensor & anchor, const Tensor & positive, const Tensor & negative, double margin, double p, double eps, bool swap, int64_t reduction) { | |
- auto result = TypeDefault::triplet_margin_loss(anchor, positive, negative, margin, p, eps, swap, reduction); | |
- return result; | |
-} | |
Tensor triu(const Tensor & self, int64_t diagonal) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<TriuBackward> grad_fn; | |
@@ -37813,10 +35897,6 @@ | |
} | |
return out; | |
} | |
-Tensor type_as(const Tensor & self, const Tensor & other) { | |
- auto result = TypeDefault::type_as(self, other); | |
- return result; | |
-} | |
std::vector<Tensor> unbind_int(const Tensor & self, int64_t dim) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<UnbindBackward> grad_fn; | |
@@ -37846,18 +35926,6 @@ | |
} | |
return result; | |
} | |
-std::vector<Tensor> unbind_Dimname(const Tensor & self, Dimname dim) { | |
- auto result = TypeDefault::unbind_Dimname(self, dim); | |
- return result; | |
-} | |
-Tensor unflatten_Dimname(const Tensor & self, Dimname dim, IntArrayRef sizes, DimnameList names) { | |
- auto result = TypeDefault::unflatten_Dimname(self, dim, sizes, names); | |
- return result; | |
-} | |
-Tensor unflatten_int(const Tensor & self, int64_t dim, IntArrayRef sizes, DimnameList names) { | |
- auto result = TypeDefault::unflatten_int(self, dim, sizes, names); | |
- return result; | |
-} | |
Tensor unfold(const Tensor & self, int64_t dimension, int64_t size, int64_t step) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<UnfoldBackward> grad_fn; | |
@@ -38049,10 +36117,6 @@ | |
} | |
return std::make_tuple(std::move(result0), std::move(result1), std::move(result2)); | |
} | |
-std::vector<Tensor> unsafe_chunk(const Tensor & self, int64_t chunks, int64_t dim) { | |
- auto result = TypeDefault::unsafe_chunk(self, chunks, dim); | |
- return result; | |
-} | |
std::vector<Tensor> unsafe_split_Tensor(const Tensor & self, int64_t split_size, int64_t dim) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<UnsafeSplitBackward> grad_fn; | |
@@ -39634,10 +37698,6 @@ | |
} | |
return result; | |
} | |
-Tensor vander(const Tensor & x, c10::optional<int64_t> N, bool increasing) { | |
- auto result = TypeDefault::vander(x, N, increasing); | |
- return result; | |
-} | |
Tensor var(const Tensor & self, bool unbiased) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<VarBackward0> grad_fn; | |
@@ -39700,10 +37760,6 @@ | |
} | |
return result; | |
} | |
-Tensor var_names_dim(const Tensor & self, DimnameList dim, bool unbiased, bool keepdim) { | |
- auto result = TypeDefault::var_names_dim(self, dim, unbiased, keepdim); | |
- return result; | |
-} | |
std::tuple<Tensor,Tensor> var_mean(const Tensor & self, bool unbiased) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<VarMeanBackward1> grad_fn; | |
@@ -39778,12 +37834,6 @@ | |
} | |
return std::make_tuple(std::move(result0), std::move(result1)); | |
} | |
-std::tuple<Tensor,Tensor> var_mean_names_dim(const Tensor & self, DimnameList dim, bool unbiased, bool keepdim) { | |
- Tensor result0; | |
- Tensor result1; | |
- std::tie(result0, result1) = TypeDefault::var_mean_names_dim(self, dim, unbiased, keepdim); | |
- return std::make_tuple(std::move(result0), std::move(result1)); | |
-} | |
Tensor & var_out_out(Tensor & out, const Tensor & self, IntArrayRef dim, bool unbiased, bool keepdim) { | |
auto& out_ = unpack(out, "out", 0); | |
auto& self_ = unpack(self, "self", 1); | |
@@ -39822,10 +37872,6 @@ | |
} | |
return out; | |
} | |
-Tensor & var_out_names_out(Tensor & out, const Tensor & self, DimnameList dim, bool unbiased, bool keepdim) { | |
- TypeDefault::var_out_names_out(out, self, dim, unbiased, keepdim); | |
- return out; | |
-} | |
Tensor view(const Tensor & self, IntArrayRef size) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<ViewBackward> grad_fn; | |
@@ -39862,10 +37908,6 @@ | |
} | |
return result; | |
} | |
-Tensor view_as(const Tensor & self, const Tensor & other) { | |
- auto result = TypeDefault::view_as(self, other); | |
- return result; | |
-} | |
Tensor view_as_complex(const Tensor & self) { | |
auto& self_ = unpack(self, "self", 0); | |
std::shared_ptr<ViewAsComplexBackward> grad_fn; | |
@@ -39934,26 +37976,6 @@ | |
} | |
return result; | |
} | |
-Tensor where_self(const Tensor & condition, const Tensor & self, const Tensor & other) { | |
- auto result = TypeDefault::where_self(condition, self, other); | |
- return result; | |
-} | |
-Tensor where_ScalarSelf(const Tensor & condition, Scalar self, const Tensor & other) { | |
- auto result = TypeDefault::where_ScalarSelf(condition, self, other); | |
- return result; | |
-} | |
-Tensor where_ScalarOther(const Tensor & condition, const Tensor & self, Scalar other) { | |
- auto result = TypeDefault::where_ScalarOther(condition, self, other); | |
- return result; | |
-} | |
-Tensor where_Scalar(const Tensor & condition, Scalar self, Scalar other) { | |
- auto result = TypeDefault::where_Scalar(condition, self, other); | |
- return result; | |
-} | |
-std::vector<Tensor> where(const Tensor & condition) { | |
- auto result = TypeDefault::where(condition); | |
- return result; | |
-} | |
Tensor & zero_(Tensor & self) { | |
auto& self_ = unpack(self, "self", 0); | |
check_inplace(self); | |
@@ -39983,77 +38005,34 @@ | |
} | |
return self; | |
} | |
-Tensor zeros_names(IntArrayRef size, c10::optional<DimnameList> names, const TensorOptions & options) { | |
- auto result = TypeDefault::zeros_names(size, names, options); | |
- return result; | |
-} | |
-Tensor zeros(IntArrayRef size, const TensorOptions & options) { | |
- auto result = TypeDefault::zeros(size, options); | |
- return result; | |
-} | |
-Tensor zeros_like(const Tensor & self, const TensorOptions & options, c10::optional<MemoryFormat> memory_format) { | |
- auto result = TypeDefault::zeros_like(self, options, memory_format); | |
- return result; | |
-} | |
-Tensor & zeros_out_out(Tensor & out, IntArrayRef size) { | |
- TypeDefault::zeros_out_out(out, size); | |
- return out; | |
-} | |
// } | |
} | |
namespace { | |
TORCH_LIBRARY_IMPL(aten, Autograd, m) { | |
- m.impl("__and__.Scalar", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::__and___Scalar)) | |
- ); | |
- m.impl("__and__.Tensor", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::__and___Tensor)) | |
- ); | |
- m.impl_UNBOXED("__iand__.Scalar", &VariableType::__iand___Scalar); | |
- m.impl_UNBOXED("__iand__.Tensor", &VariableType::__iand___Tensor); | |
m.impl_UNBOXED("__ilshift__.Scalar", &VariableType::__ilshift___Scalar); | |
m.impl_UNBOXED("__ilshift__.Tensor", &VariableType::__ilshift___Tensor); | |
- m.impl_UNBOXED("__ior__.Scalar", &VariableType::__ior___Scalar); | |
- m.impl_UNBOXED("__ior__.Tensor", &VariableType::__ior___Tensor); | |
m.impl_UNBOXED("__irshift__.Scalar", &VariableType::__irshift___Scalar); | |
m.impl_UNBOXED("__irshift__.Tensor", &VariableType::__irshift___Tensor); | |
- m.impl_UNBOXED("__ixor__.Scalar", &VariableType::__ixor___Scalar); | |
- m.impl_UNBOXED("__ixor__.Tensor", &VariableType::__ixor___Tensor); | |
m.impl("__lshift__.Scalar", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::__lshift___Scalar)) | |
); | |
m.impl("__lshift__.Tensor", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::__lshift___Tensor)) | |
); | |
- m.impl("__or__.Scalar", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::__or___Scalar)) | |
- ); | |
- m.impl("__or__.Tensor", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::__or___Tensor)) | |
- ); | |
m.impl("__rshift__.Scalar", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::__rshift___Scalar)) | |
); | |
m.impl("__rshift__.Tensor", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::__rshift___Tensor)) | |
); | |
- m.impl("__xor__.Scalar", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::__xor___Scalar)) | |
- ); | |
- m.impl("__xor__.Tensor", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::__xor___Tensor)) | |
- ); | |
m.impl("_adaptive_avg_pool2d", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_adaptive_avg_pool2d)) | |
); | |
m.impl("_adaptive_avg_pool2d_backward", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_adaptive_avg_pool2d_backward)) | |
); | |
- m.impl("_add_batch_dim", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_add_batch_dim)) | |
- ); | |
m.impl_UNBOXED("_addmv_impl_", &VariableType::_addmv_impl_); | |
m.impl("_addr", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_addr)) | |
@@ -40062,37 +38041,10 @@ | |
m.impl_UNBOXED("_addr.out", &VariableType::_addr_out_out); | |
m.impl_UNBOXED("_amp_non_finite_check_and_unscale_", &VariableType::_amp_non_finite_check_and_unscale_); | |
m.impl_UNBOXED("_amp_update_scale", &VariableType::_amp_update_scale); | |
- m.impl_UNBOXED("_baddbmm_mkl_", &VariableType::_baddbmm_mkl_); | |
- m.impl_UNBOXED("_batch_norm_impl_index", &VariableType::_batch_norm_impl_index); | |
- m.impl_UNBOXED("_batch_norm_impl_index_backward", &VariableType::_batch_norm_impl_index_backward); | |
m.impl("_bmm", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_bmm)) | |
); | |
m.impl_UNBOXED("_bmm.out", &VariableType::_bmm_out_out); | |
- m.impl("_cast_Byte", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_cast_Byte)) | |
- ); | |
- m.impl("_cast_Char", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_cast_Char)) | |
- ); | |
- m.impl("_cast_Double", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_cast_Double)) | |
- ); | |
- m.impl("_cast_Float", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_cast_Float)) | |
- ); | |
- m.impl("_cast_Half", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_cast_Half)) | |
- ); | |
- m.impl("_cast_Int", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_cast_Int)) | |
- ); | |
- m.impl("_cast_Long", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_cast_Long)) | |
- ); | |
- m.impl("_cast_Short", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_cast_Short)) | |
- ); | |
m.impl("_cat", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_cat)) | |
); | |
@@ -40109,13 +38061,7 @@ | |
m.impl("_cholesky_solve_helper", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_cholesky_solve_helper)) | |
); | |
- m.impl("_choose_qparams_per_tensor", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_choose_qparams_per_tensor)) | |
- ); | |
m.impl_UNBOXED("_coalesced_", &VariableType::_coalesced_); | |
- m.impl_UNBOXED("_convolution", &VariableType::_convolution); | |
- m.impl_UNBOXED("_convolution_double_backward", &VariableType::_convolution_double_backward); | |
- m.impl_UNBOXED("_convolution_nogroup", &VariableType::_convolution_nogroup); | |
m.impl("_copy_from", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_copy_from)) | |
); | |
@@ -40136,18 +38082,6 @@ | |
m.impl("_cudnn_rnn_flatten_weight", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_cudnn_rnn_flatten_weight)) | |
); | |
- m.impl("_cufft_clear_plan_cache", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_cufft_clear_plan_cache)) | |
- ); | |
- m.impl("_cufft_get_plan_cache_max_size", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_cufft_get_plan_cache_max_size)) | |
- ); | |
- m.impl("_cufft_get_plan_cache_size", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_cufft_get_plan_cache_size)) | |
- ); | |
- m.impl("_cufft_set_plan_cache_max_size", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_cufft_set_plan_cache_max_size)) | |
- ); | |
m.impl_UNBOXED("_cummax_helper", &VariableType::_cummax_helper); | |
m.impl_UNBOXED("_cummin_helper", &VariableType::_cummin_helper); | |
m.impl("_cumprod", | |
@@ -40158,29 +38092,21 @@ | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_cumsum)) | |
); | |
m.impl_UNBOXED("_cumsum.out", &VariableType::_cumsum_out_out); | |
- m.impl("_debug_has_internal_overlap", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_debug_has_internal_overlap)) | |
- ); | |
m.impl("_dimI", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_dimI)) | |
); | |
m.impl("_dimV", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_dimV)) | |
); | |
- m.impl("_dim_arange", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_dim_arange)) | |
- ); | |
m.impl("_dirichlet_grad", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_dirichlet_grad)) | |
); | |
m.impl_UNBOXED("_embedding_bag", &VariableType::_embedding_bag); | |
- m.impl_UNBOXED("_embedding_bag_backward", &VariableType::_embedding_bag_backward); | |
m.impl_UNBOXED("_embedding_bag_dense_backward", &VariableType::_embedding_bag_dense_backward); | |
m.impl_UNBOXED("_embedding_bag_forward_only", &VariableType::_embedding_bag_forward_only); | |
m.impl("_embedding_bag_per_sample_weights_backward", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_embedding_bag_per_sample_weights_backward)) | |
); | |
- m.impl_UNBOXED("_embedding_bag_sparse_backward", &VariableType::_embedding_bag_sparse_backward); | |
m.impl("_empty_affine_quantized", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_empty_affine_quantized)) | |
); | |
@@ -40193,25 +38119,13 @@ | |
m.impl("_fake_quantize_learnable_per_channel_affine", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_fake_quantize_learnable_per_channel_affine)) | |
); | |
- m.impl("_fake_quantize_learnable_per_channel_affine_backward", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_fake_quantize_learnable_per_channel_affine_backward)) | |
- ); | |
m.impl("_fake_quantize_learnable_per_tensor_affine", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_fake_quantize_learnable_per_tensor_affine)) | |
); | |
- m.impl("_fake_quantize_learnable_per_tensor_affine_backward", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_fake_quantize_learnable_per_tensor_affine_backward)) | |
- ); | |
m.impl("_fft_with_size", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_fft_with_size)) | |
); | |
m.impl_UNBOXED("_fused_dropout", &VariableType::_fused_dropout); | |
- m.impl("_gather_sparse_backward", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_gather_sparse_backward)) | |
- ); | |
- m.impl("_has_compatible_shallow_copy_type", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_has_compatible_shallow_copy_type)) | |
- ); | |
m.impl_UNBOXED("_index_copy_", &VariableType::_index_copy_); | |
m.impl_UNBOXED("_index_put_impl_", &VariableType::_index_put_impl_); | |
m.impl("_indices", | |
@@ -40266,31 +38180,13 @@ | |
m.impl("_multinomial_alias_setup", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_multinomial_alias_setup)) | |
); | |
- m.impl("_nnpack_available", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_nnpack_available)) | |
- ); | |
m.impl_UNBOXED("_nnpack_spatial_convolution", &VariableType::_nnpack_spatial_convolution); | |
- m.impl("_nnpack_spatial_convolution_backward", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_nnpack_spatial_convolution_backward)) | |
- ); | |
- m.impl("_nnpack_spatial_convolution_backward_input", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_nnpack_spatial_convolution_backward_input)) | |
- ); | |
- m.impl("_nnpack_spatial_convolution_backward_weight", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_nnpack_spatial_convolution_backward_weight)) | |
- ); | |
m.impl("_nnz", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_nnz)) | |
); | |
m.impl("_pack_padded_sequence", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_pack_padded_sequence)) | |
); | |
- m.impl("_pack_padded_sequence_backward", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_pack_padded_sequence_backward)) | |
- ); | |
- m.impl("_pad_packed_sequence", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_pad_packed_sequence)) | |
- ); | |
m.impl("_pdist_backward", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_pdist_backward)) | |
); | |
@@ -40300,25 +38196,10 @@ | |
m.impl("_qr_helper", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_qr_helper)) | |
); | |
- m.impl("_remove_batch_dim", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_remove_batch_dim)) | |
- ); | |
- m.impl("_reshape_from_tensor", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_reshape_from_tensor)) | |
- ); | |
m.impl("_s_where", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_s_where)) | |
); | |
m.impl_UNBOXED("_sample_dirichlet", &VariableType::_sample_dirichlet); | |
- m.impl("_shape_as_tensor", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_shape_as_tensor)) | |
- ); | |
- m.impl("_sobol_engine_draw", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_sobol_engine_draw)) | |
- ); | |
- m.impl_UNBOXED("_sobol_engine_ff_", &VariableType::_sobol_engine_ff_); | |
- m.impl_UNBOXED("_sobol_engine_initialize_state_", &VariableType::_sobol_engine_initialize_state_); | |
- m.impl_UNBOXED("_sobol_engine_scramble_", &VariableType::_sobol_engine_scramble_); | |
m.impl("_softmax", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_softmax)) | |
); | |
@@ -40331,50 +38212,27 @@ | |
m.impl("_sparse_addmm", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_sparse_addmm)) | |
); | |
- m.impl("_sparse_coo_tensor_unsafe", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_sparse_coo_tensor_unsafe)) | |
- ); | |
m.impl("_sparse_coo_tensor_with_dims", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_sparse_coo_tensor_with_dims)) | |
); | |
m.impl("_sparse_coo_tensor_with_dims_and_tensors", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_sparse_coo_tensor_with_dims_and_tensors)) | |
); | |
- m.impl("_sparse_log_softmax.int", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_sparse_log_softmax_int)) | |
- ); | |
- m.impl_UNBOXED("_sparse_log_softmax.Dimname", &VariableType::_sparse_log_softmax_Dimname); | |
m.impl("_sparse_log_softmax", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_sparse_log_softmax)) | |
); | |
m.impl("_sparse_log_softmax_backward_data", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_sparse_log_softmax_backward_data)) | |
); | |
- m.impl("_sparse_mm", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_sparse_mm)) | |
- ); | |
- m.impl("_sparse_softmax.int", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_sparse_softmax_int)) | |
- ); | |
- m.impl_UNBOXED("_sparse_softmax.Dimname", &VariableType::_sparse_softmax_Dimname); | |
m.impl("_sparse_softmax", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_sparse_softmax)) | |
); | |
m.impl("_sparse_softmax_backward_data", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_sparse_softmax_backward_data)) | |
); | |
- m.impl("_sparse_sum", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_sparse_sum)) | |
- ); | |
- m.impl("_sparse_sum.dtype", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_sparse_sum_dtype)) | |
- ); | |
m.impl("_sparse_sum.dim", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_sparse_sum_dim)) | |
); | |
- m.impl("_sparse_sum.dim_dtype", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_sparse_sum_dim_dtype)) | |
- ); | |
m.impl("_sparse_sum_backward", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_sparse_sum_backward)) | |
); | |
@@ -40393,11 +38251,6 @@ | |
); | |
m.impl_UNBOXED("_test_optional_floatlist", &VariableType::_test_optional_floatlist); | |
m.impl_UNBOXED("_test_optional_intlist", &VariableType::_test_optional_intlist); | |
- m.impl("_test_serialization_subcmul", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_test_serialization_subcmul)) | |
- ); | |
- m.impl_UNBOXED("_thnn_differentiable_gru_cell_backward", &VariableType::_thnn_differentiable_gru_cell_backward); | |
- m.impl_UNBOXED("_thnn_differentiable_lstm_cell_backward", &VariableType::_thnn_differentiable_lstm_cell_backward); | |
m.impl_UNBOXED("_thnn_fused_gru_cell", &VariableType::_thnn_fused_gru_cell); | |
m.impl("_thnn_fused_gru_cell_backward", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_thnn_fused_gru_cell_backward)) | |
@@ -40422,28 +38275,18 @@ | |
m.impl("_use_cudnn_ctc_loss", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_use_cudnn_ctc_loss)) | |
); | |
- m.impl("_use_cudnn_rnn_flatten_weight", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_use_cudnn_rnn_flatten_weight)) | |
- ); | |
- m.impl_UNBOXED("_validate_sparse_coo_tensor_args", &VariableType::_validate_sparse_coo_tensor_args); | |
m.impl("_values", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_values)) | |
); | |
m.impl("_var", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_var)) | |
); | |
- m.impl("_weight_norm", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_weight_norm)) | |
- ); | |
m.impl("_weight_norm_cuda_interface", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_weight_norm_cuda_interface)) | |
); | |
m.impl("_weight_norm_cuda_interface_backward", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_weight_norm_cuda_interface_backward)) | |
); | |
- m.impl("_weight_norm_differentiable_backward", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::_weight_norm_differentiable_backward)) | |
- ); | |
m.impl("abs", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::abs)) | |
); | |
@@ -40464,12 +38307,6 @@ | |
); | |
m.impl_UNBOXED("acosh_", &VariableType::acosh_); | |
m.impl_UNBOXED("acosh.out", &VariableType::acosh_out_out); | |
- m.impl("adaptive_avg_pool1d", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::adaptive_avg_pool1d)) | |
- ); | |
- m.impl("adaptive_avg_pool2d", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::adaptive_avg_pool2d)) | |
- ); | |
m.impl_UNBOXED("adaptive_avg_pool2d.out", &VariableType::adaptive_avg_pool2d_out_out); | |
m.impl("adaptive_avg_pool3d", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::adaptive_avg_pool3d)) | |
@@ -40479,9 +38316,6 @@ | |
); | |
m.impl_UNBOXED("adaptive_avg_pool3d_backward.grad_input", &VariableType::adaptive_avg_pool3d_backward_out_grad_input); | |
m.impl_UNBOXED("adaptive_avg_pool3d.out", &VariableType::adaptive_avg_pool3d_out_out); | |
- m.impl("adaptive_max_pool1d", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::adaptive_max_pool1d)) | |
- ); | |
m.impl("adaptive_max_pool2d", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::adaptive_max_pool2d)) | |
); | |
@@ -40545,36 +38379,16 @@ | |
m.impl("affine_grid_generator", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::affine_grid_generator)) | |
); | |
- m.impl("affine_grid_generator_backward", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::affine_grid_generator_backward)) | |
- ); | |
m.impl("alias", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::alias)) | |
); | |
- m.impl("align_as", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::align_as)) | |
- ); | |
- m.impl("align_tensors", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::align_tensors)) | |
- ); | |
- m.impl_UNBOXED("align_to", &VariableType::align_to); | |
- m.impl_UNBOXED("align_to.ellipsis_idx", &VariableType::align_to_ellipsis_idx); | |
m.impl("all.dim", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::all_dim)) | |
); | |
- m.impl_UNBOXED("all.dimname", &VariableType::all_dimname); | |
m.impl("all", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::all)) | |
); | |
m.impl_UNBOXED("all.out", &VariableType::all_out_out); | |
- m.impl_UNBOXED("all.dimname_out", &VariableType::all_out_dimname_out); | |
- m.impl("allclose", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::allclose)) | |
- ); | |
- m.impl("alpha_dropout", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::alpha_dropout)) | |
- ); | |
- m.impl_UNBOXED("alpha_dropout_", &VariableType::alpha_dropout_); | |
m.impl("angle", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::angle)) | |
); | |
@@ -40582,22 +38396,10 @@ | |
m.impl("any.dim", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::any_dim)) | |
); | |
- m.impl_UNBOXED("any.dimname", &VariableType::any_dimname); | |
m.impl("any", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::any)) | |
); | |
m.impl_UNBOXED("any.out", &VariableType::any_out_out); | |
- m.impl_UNBOXED("any.dimname_out", &VariableType::any_out_dimname_out); | |
- m.impl("arange", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::arange)) | |
- ); | |
- m.impl("arange.start", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::arange_start)) | |
- ); | |
- m.impl("arange.start_step", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::arange_start_step)) | |
- ); | |
- m.impl_UNBOXED("arange.out", &VariableType::arange_out_out); | |
m.impl_UNBOXED("arange.start_out", &VariableType::arange_out_start_out); | |
m.impl("argmax", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::argmax)) | |
@@ -40605,10 +38407,6 @@ | |
m.impl("argmin", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::argmin)) | |
); | |
- m.impl("argsort", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::argsort)) | |
- ); | |
- m.impl_UNBOXED("argsort.dimname", &VariableType::argsort_dimname); | |
m.impl("as_strided", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::as_strided)) | |
); | |
@@ -40638,27 +38436,6 @@ | |
); | |
m.impl_UNBOXED("atanh_", &VariableType::atanh_); | |
m.impl_UNBOXED("atanh.out", &VariableType::atanh_out_out); | |
- m.impl("atleast_1d", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::atleast_1d)) | |
- ); | |
- m.impl("atleast_1d.Sequence", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::atleast_1d_Sequence)) | |
- ); | |
- m.impl("atleast_2d", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::atleast_2d)) | |
- ); | |
- m.impl("atleast_2d.Sequence", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::atleast_2d_Sequence)) | |
- ); | |
- m.impl("atleast_3d", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::atleast_3d)) | |
- ); | |
- m.impl("atleast_3d.Sequence", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::atleast_3d_Sequence)) | |
- ); | |
- m.impl("avg_pool1d", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::avg_pool1d)) | |
- ); | |
m.impl("avg_pool2d", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::avg_pool2d)) | |
); | |
@@ -40680,13 +38457,6 @@ | |
); | |
m.impl_UNBOXED("baddbmm_", &VariableType::baddbmm_); | |
m.impl_UNBOXED("baddbmm.out", &VariableType::baddbmm_out_out); | |
- m.impl("bartlett_window", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::bartlett_window)) | |
- ); | |
- m.impl("bartlett_window.periodic", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::bartlett_window_periodic)) | |
- ); | |
- m.impl_UNBOXED("batch_norm", &VariableType::batch_norm); | |
m.impl_UNBOXED("batch_norm_backward_elemt", &VariableType::batch_norm_backward_elemt); | |
m.impl_UNBOXED("batch_norm_backward_reduce", &VariableType::batch_norm_backward_reduce); | |
m.impl_UNBOXED("batch_norm_elemt", &VariableType::batch_norm_elemt); | |
@@ -40698,70 +38468,27 @@ | |
); | |
m.impl_UNBOXED("batch_norm_update_stats", &VariableType::batch_norm_update_stats); | |
m.impl_UNBOXED("bernoulli", &VariableType::bernoulli); | |
- m.impl_UNBOXED("bernoulli.p", &VariableType::bernoulli_p); | |
m.impl_UNBOXED("bernoulli_.Tensor", &VariableType::bernoulli__Tensor); | |
m.impl_UNBOXED("bernoulli_.float", &VariableType::bernoulli__float); | |
m.impl_UNBOXED("bernoulli.out", &VariableType::bernoulli_out_out); | |
- m.impl_UNBOXED("bilinear", &VariableType::bilinear); | |
m.impl_UNBOXED("binary_cross_entropy", &VariableType::binary_cross_entropy); | |
m.impl_UNBOXED("binary_cross_entropy_backward", &VariableType::binary_cross_entropy_backward); | |
m.impl_UNBOXED("binary_cross_entropy_backward.grad_input", &VariableType::binary_cross_entropy_backward_out_grad_input); | |
m.impl_UNBOXED("binary_cross_entropy.out", &VariableType::binary_cross_entropy_out_out); | |
m.impl_UNBOXED("binary_cross_entropy_with_logits", &VariableType::binary_cross_entropy_with_logits); | |
- m.impl_UNBOXED("binary_cross_entropy_with_logits_backward", &VariableType::binary_cross_entropy_with_logits_backward); | |
m.impl_UNBOXED("bincount", &VariableType::bincount); | |
m.impl_UNBOXED("binomial", &VariableType::binomial); | |
- m.impl("bitwise_and.Scalar", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::bitwise_and_Scalar)) | |
- ); | |
- m.impl("bitwise_and.Tensor", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::bitwise_and_Tensor)) | |
- ); | |
- m.impl_UNBOXED("bitwise_and_.Scalar", &VariableType::bitwise_and__Scalar); | |
- m.impl_UNBOXED("bitwise_and_.Tensor", &VariableType::bitwise_and__Tensor); | |
m.impl_UNBOXED("bitwise_and.Tensor_out", &VariableType::bitwise_and_out_Tensor_out); | |
m.impl_UNBOXED("bitwise_and.Scalar_out", &VariableType::bitwise_and_out_Scalar_out); | |
- m.impl("bitwise_not", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::bitwise_not)) | |
- ); | |
- m.impl_UNBOXED("bitwise_not_", &VariableType::bitwise_not_); | |
m.impl_UNBOXED("bitwise_not.out", &VariableType::bitwise_not_out_out); | |
- m.impl("bitwise_or.Scalar", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::bitwise_or_Scalar)) | |
- ); | |
- m.impl("bitwise_or.Tensor", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::bitwise_or_Tensor)) | |
- ); | |
- m.impl_UNBOXED("bitwise_or_.Scalar", &VariableType::bitwise_or__Scalar); | |
- m.impl_UNBOXED("bitwise_or_.Tensor", &VariableType::bitwise_or__Tensor); | |
m.impl_UNBOXED("bitwise_or.Tensor_out", &VariableType::bitwise_or_out_Tensor_out); | |
m.impl_UNBOXED("bitwise_or.Scalar_out", &VariableType::bitwise_or_out_Scalar_out); | |
- m.impl("bitwise_xor.Scalar", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::bitwise_xor_Scalar)) | |
- ); | |
- m.impl("bitwise_xor.Tensor", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::bitwise_xor_Tensor)) | |
- ); | |
- m.impl_UNBOXED("bitwise_xor_.Scalar", &VariableType::bitwise_xor__Scalar); | |
- m.impl_UNBOXED("bitwise_xor_.Tensor", &VariableType::bitwise_xor__Tensor); | |
m.impl_UNBOXED("bitwise_xor.Tensor_out", &VariableType::bitwise_xor_out_Tensor_out); | |
m.impl_UNBOXED("bitwise_xor.Scalar_out", &VariableType::bitwise_xor_out_Scalar_out); | |
- m.impl("blackman_window", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::blackman_window)) | |
- ); | |
- m.impl("blackman_window.periodic", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::blackman_window_periodic)) | |
- ); | |
- m.impl("block_diag", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::block_diag)) | |
- ); | |
m.impl("bmm", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::bmm)) | |
); | |
m.impl_UNBOXED("bmm.out", &VariableType::bmm_out_out); | |
- m.impl("broadcast_tensors", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::broadcast_tensors)) | |
- ); | |
m.impl("bucketize.Tensor", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::bucketize_Tensor)) | |
); | |
@@ -40769,22 +38496,11 @@ | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::bucketize_Scalar)) | |
); | |
m.impl_UNBOXED("bucketize.Tensor_out", &VariableType::bucketize_out_Tensor_out); | |
- m.impl("can_cast", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::can_cast)) | |
- ); | |
- m.impl("cartesian_prod", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::cartesian_prod)) | |
- ); | |
m.impl("cat", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::cat)) | |
); | |
- m.impl_UNBOXED("cat.names", &VariableType::cat_names); | |
m.impl_UNBOXED("cat.out", &VariableType::cat_out_out); | |
- m.impl_UNBOXED("cat.names_out", &VariableType::cat_out_names_out); | |
m.impl_UNBOXED("cauchy_", &VariableType::cauchy_); | |
- m.impl("cdist", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::cdist)) | |
- ); | |
m.impl("ceil", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::ceil)) | |
); | |
@@ -40794,9 +38510,6 @@ | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::celu)) | |
); | |
m.impl_UNBOXED("celu_", &VariableType::celu_); | |
- m.impl("chain_matmul", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::chain_matmul)) | |
- ); | |
m.impl("channel_shuffle", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::channel_shuffle)) | |
); | |
@@ -40812,9 +38525,6 @@ | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::cholesky_solve)) | |
); | |
m.impl_UNBOXED("cholesky_solve.out", &VariableType::cholesky_solve_out_out); | |
- m.impl("chunk", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::chunk)) | |
- ); | |
m.impl("clamp", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::clamp)) | |
); | |
@@ -40844,9 +38554,6 @@ | |
); | |
m.impl_UNBOXED("col2im_backward.grad_input", &VariableType::col2im_backward_out_grad_input); | |
m.impl_UNBOXED("col2im.out", &VariableType::col2im_out_out); | |
- m.impl("combinations", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::combinations)) | |
- ); | |
m.impl("conj", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::conj)) | |
); | |
@@ -40854,22 +38561,9 @@ | |
m.impl("constant_pad_nd", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::constant_pad_nd)) | |
); | |
- m.impl("contiguous", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::contiguous)) | |
- ); | |
- m.impl_UNBOXED("conv1d", &VariableType::conv1d); | |
- m.impl_UNBOXED("conv2d", &VariableType::conv2d); | |
- m.impl_UNBOXED("conv3d", &VariableType::conv3d); | |
m.impl("conv_tbc", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::conv_tbc)) | |
); | |
- m.impl("conv_tbc_backward", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::conv_tbc_backward)) | |
- ); | |
- m.impl_UNBOXED("conv_transpose1d", &VariableType::conv_transpose1d); | |
- m.impl_UNBOXED("conv_transpose2d.input", &VariableType::conv_transpose2d_input); | |
- m.impl_UNBOXED("conv_transpose3d.input", &VariableType::conv_transpose3d_input); | |
- m.impl_UNBOXED("convolution", &VariableType::convolution); | |
m.impl("convolution_backward_overrideable", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::convolution_backward_overrideable)) | |
); | |
@@ -40885,12 +38579,6 @@ | |
); | |
m.impl_UNBOXED("cosh_", &VariableType::cosh_); | |
m.impl_UNBOXED("cosh.out", &VariableType::cosh_out_out); | |
- m.impl("cosine_embedding_loss", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::cosine_embedding_loss)) | |
- ); | |
- m.impl("cosine_similarity", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::cosine_similarity)) | |
- ); | |
m.impl("count_nonzero.dim_IntList", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::count_nonzero_dim_IntList)) | |
); | |
@@ -40901,12 +38589,6 @@ | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::cross)) | |
); | |
m.impl_UNBOXED("cross.out", &VariableType::cross_out_out); | |
- m.impl("ctc_loss.IntList", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::ctc_loss_IntList)) | |
- ); | |
- m.impl("ctc_loss.Tensor", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::ctc_loss_Tensor)) | |
- ); | |
m.impl("cudnn_affine_grid_generator", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::cudnn_affine_grid_generator)) | |
); | |
@@ -40947,33 +38629,22 @@ | |
m.impl("cudnn_grid_sampler_backward", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::cudnn_grid_sampler_backward)) | |
); | |
- m.impl("cudnn_is_acceptable", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::cudnn_is_acceptable)) | |
- ); | |
m.impl("cummax", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::cummax)) | |
); | |
- m.impl_UNBOXED("cummax.dimname", &VariableType::cummax_dimname); | |
m.impl_UNBOXED("cummax.out", &VariableType::cummax_out_out); | |
- m.impl_UNBOXED("cummax.dimname_out", &VariableType::cummax_out_dimname_out); | |
m.impl("cummin", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::cummin)) | |
); | |
- m.impl_UNBOXED("cummin.dimname", &VariableType::cummin_dimname); | |
m.impl_UNBOXED("cummin.out", &VariableType::cummin_out_out); | |
- m.impl_UNBOXED("cummin.dimname_out", &VariableType::cummin_out_dimname_out); | |
m.impl("cumprod", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::cumprod)) | |
); | |
- m.impl_UNBOXED("cumprod.dimname", &VariableType::cumprod_dimname); | |
m.impl_UNBOXED("cumprod.out", &VariableType::cumprod_out_out); | |
- m.impl_UNBOXED("cumprod.dimname_out", &VariableType::cumprod_out_dimname_out); | |
m.impl("cumsum", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::cumsum)) | |
); | |
- m.impl_UNBOXED("cumsum.dimname", &VariableType::cumsum_dimname); | |
m.impl_UNBOXED("cumsum.out", &VariableType::cumsum_out_out); | |
- m.impl_UNBOXED("cumsum.dimname_out", &VariableType::cumsum_out_dimname_out); | |
m.impl("deg2rad", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::deg2rad)) | |
); | |
@@ -40994,17 +38665,10 @@ | |
m.impl("diag", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::diag)) | |
); | |
- m.impl("diag_embed", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::diag_embed)) | |
- ); | |
m.impl_UNBOXED("diag.out", &VariableType::diag_out_out); | |
- m.impl("diagflat", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::diagflat)) | |
- ); | |
m.impl("diagonal", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::diagonal)) | |
); | |
- m.impl_UNBOXED("diagonal.Dimname", &VariableType::diagonal_Dimname); | |
m.impl("digamma", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::digamma)) | |
); | |
@@ -41026,17 +38690,10 @@ | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::dot)) | |
); | |
m.impl_UNBOXED("dot.out", &VariableType::dot_out_out); | |
- m.impl("dropout", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::dropout)) | |
- ); | |
- m.impl_UNBOXED("dropout_", &VariableType::dropout_); | |
m.impl("eig", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::eig)) | |
); | |
m.impl_UNBOXED("eig.e", &VariableType::eig_out_e); | |
- m.impl("einsum", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::einsum)) | |
- ); | |
m.impl("elu", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::elu)) | |
); | |
@@ -41049,28 +38706,13 @@ | |
m.impl("embedding", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::embedding)) | |
); | |
- m.impl("embedding_backward", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::embedding_backward)) | |
- ); | |
- m.impl_UNBOXED("embedding_bag", &VariableType::embedding_bag); | |
m.impl("embedding_dense_backward", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::embedding_dense_backward)) | |
); | |
m.impl_UNBOXED("embedding_renorm_", &VariableType::embedding_renorm_); | |
- m.impl("embedding_sparse_backward", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::embedding_sparse_backward)) | |
- ); | |
- m.impl_UNBOXED("empty.names", &VariableType::empty_names); | |
m.impl("empty.memory_format", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::empty_memory_format)) | |
); | |
- m.impl("empty_like", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::empty_like)) | |
- ); | |
- m.impl("empty_meta", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::empty_meta)) | |
- ); | |
- m.impl_UNBOXED("empty.out", &VariableType::empty_out_out); | |
m.impl_UNBOXED("empty_quantized", &VariableType::empty_quantized); | |
m.impl("empty_strided", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::empty_strided)) | |
@@ -41111,88 +38753,25 @@ | |
m.impl("expand", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::expand)) | |
); | |
- m.impl("expand_as", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::expand_as)) | |
- ); | |
m.impl("expm1", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::expm1)) | |
); | |
m.impl_UNBOXED("expm1_", &VariableType::expm1_); | |
m.impl_UNBOXED("expm1.out", &VariableType::expm1_out_out); | |
m.impl_UNBOXED("exponential_", &VariableType::exponential_); | |
- m.impl("eye", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::eye)) | |
- ); | |
- m.impl("eye.m", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::eye_m)) | |
- ); | |
m.impl_UNBOXED("eye.out", &VariableType::eye_out_out); | |
m.impl_UNBOXED("eye.m_out", &VariableType::eye_out_m_out); | |
m.impl("fake_quantize_per_channel_affine", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::fake_quantize_per_channel_affine)) | |
); | |
- m.impl("fake_quantize_per_channel_affine_backward", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::fake_quantize_per_channel_affine_backward)) | |
- ); | |
m.impl("fake_quantize_per_tensor_affine", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::fake_quantize_per_tensor_affine)) | |
); | |
- m.impl("fake_quantize_per_tensor_affine_backward", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::fake_quantize_per_tensor_affine_backward)) | |
- ); | |
- m.impl("fbgemm_linear_fp16_weight", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::fbgemm_linear_fp16_weight)) | |
- ); | |
- m.impl("fbgemm_linear_fp16_weight_fp32_activation", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::fbgemm_linear_fp16_weight_fp32_activation)) | |
- ); | |
- m.impl("fbgemm_linear_int8_weight", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::fbgemm_linear_int8_weight)) | |
- ); | |
- m.impl("fbgemm_linear_int8_weight_fp32_activation", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::fbgemm_linear_int8_weight_fp32_activation)) | |
- ); | |
- m.impl("fbgemm_linear_quantize_weight", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::fbgemm_linear_quantize_weight)) | |
- ); | |
- m.impl("fbgemm_pack_gemm_matrix_fp16", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::fbgemm_pack_gemm_matrix_fp16)) | |
- ); | |
- m.impl("fbgemm_pack_quantized_matrix", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::fbgemm_pack_quantized_matrix)) | |
- ); | |
- m.impl("fbgemm_pack_quantized_matrix.KN", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::fbgemm_pack_quantized_matrix_KN)) | |
- ); | |
- m.impl("feature_alpha_dropout", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::feature_alpha_dropout)) | |
- ); | |
- m.impl_UNBOXED("feature_alpha_dropout_", &VariableType::feature_alpha_dropout_); | |
- m.impl("feature_dropout", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::feature_dropout)) | |
- ); | |
- m.impl_UNBOXED("feature_dropout_", &VariableType::feature_dropout_); | |
- m.impl("fft", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::fft)) | |
- ); | |
m.impl_UNBOXED("fill_.Scalar", &VariableType::fill__Scalar); | |
m.impl_UNBOXED("fill_.Tensor", &VariableType::fill__Tensor); | |
- m.impl_UNBOXED("fill_diagonal_", &VariableType::fill_diagonal_); | |
- m.impl("flatten.using_ints", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::flatten_using_ints)) | |
- ); | |
- m.impl_UNBOXED("flatten.named_out_dim", &VariableType::flatten_named_out_dim); | |
- m.impl_UNBOXED("flatten.using_names", &VariableType::flatten_using_names); | |
- m.impl_UNBOXED("flatten.DimnameList", &VariableType::flatten_DimnameList); | |
m.impl("flip", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::flip)) | |
); | |
- m.impl("fliplr", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::fliplr)) | |
- ); | |
- m.impl("flipud", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::flipud)) | |
- ); | |
m.impl("floor", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::floor)) | |
); | |
@@ -41200,11 +38779,7 @@ | |
m.impl("floor_divide", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::floor_divide)) | |
); | |
- m.impl("floor_divide.Scalar", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::floor_divide_Scalar)) | |
- ); | |
m.impl_UNBOXED("floor_divide_.Tensor", &VariableType::floor_divide__Tensor); | |
- m.impl_UNBOXED("floor_divide_.Scalar", &VariableType::floor_divide__Scalar); | |
m.impl_UNBOXED("floor_divide.out", &VariableType::floor_divide_out_out); | |
m.impl_UNBOXED("floor.out", &VariableType::floor_out_out); | |
m.impl("fmod.Scalar", | |
@@ -41238,35 +38813,13 @@ | |
); | |
m.impl_UNBOXED("fractional_max_pool3d_backward.grad_input", &VariableType::fractional_max_pool3d_backward_out_grad_input); | |
m.impl_UNBOXED("fractional_max_pool3d.output", &VariableType::fractional_max_pool3d_out_output); | |
- m.impl("frobenius_norm", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::frobenius_norm)) | |
- ); | |
- m.impl("frobenius_norm.dim", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::frobenius_norm_dim)) | |
- ); | |
- m.impl_UNBOXED("frobenius_norm.out", &VariableType::frobenius_norm_out_out); | |
m.impl("from_file", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::from_file)) | |
); | |
- m.impl_UNBOXED("full.names", &VariableType::full_names); | |
- m.impl("full", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::full)) | |
- ); | |
- m.impl("full_like", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::full_like)) | |
- ); | |
- m.impl_UNBOXED("full.out", &VariableType::full_out_out); | |
m.impl("gather", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::gather)) | |
); | |
- m.impl_UNBOXED("gather.dimname", &VariableType::gather_dimname); | |
m.impl_UNBOXED("gather.out", &VariableType::gather_out_out); | |
- m.impl_UNBOXED("gather.dimname_out", &VariableType::gather_out_dimname_out); | |
- m.impl("gcd", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::gcd)) | |
- ); | |
- m.impl_UNBOXED("gcd_", &VariableType::gcd_); | |
- m.impl_UNBOXED("gcd.out", &VariableType::gcd_out_out); | |
m.impl("ge.Scalar", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::ge_Scalar)) | |
); | |
@@ -41300,9 +38853,6 @@ | |
); | |
m.impl_UNBOXED("glu_backward.grad_input", &VariableType::glu_backward_out_grad_input); | |
m.impl_UNBOXED("glu.out", &VariableType::glu_out_out); | |
- m.impl("grid_sampler", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::grid_sampler)) | |
- ); | |
m.impl("grid_sampler_2d", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::grid_sampler_2d)) | |
); | |
@@ -41315,14 +38865,6 @@ | |
m.impl("grid_sampler_3d_backward", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::grid_sampler_3d_backward)) | |
); | |
- m.impl_UNBOXED("group_norm", &VariableType::group_norm); | |
- m.impl("gru.input", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::gru_input)) | |
- ); | |
- m.impl("gru.data", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::gru_data)) | |
- ); | |
- m.impl_UNBOXED("gru_cell", &VariableType::gru_cell); | |
m.impl("gt.Scalar", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::gt_Scalar)) | |
); | |
@@ -41333,24 +38875,6 @@ | |
m.impl_UNBOXED("gt_.Tensor", &VariableType::gt__Tensor); | |
m.impl_UNBOXED("gt.Scalar_out", &VariableType::gt_out_Scalar_out); | |
m.impl_UNBOXED("gt.Tensor_out", &VariableType::gt_out_Tensor_out); | |
- m.impl("hamming_window", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::hamming_window)) | |
- ); | |
- m.impl("hamming_window.periodic", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::hamming_window_periodic)) | |
- ); | |
- m.impl("hamming_window.periodic_alpha", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::hamming_window_periodic_alpha)) | |
- ); | |
- m.impl("hamming_window.periodic_alpha_beta", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::hamming_window_periodic_alpha_beta)) | |
- ); | |
- m.impl("hann_window", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::hann_window)) | |
- ); | |
- m.impl("hann_window.periodic", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::hann_window_periodic)) | |
- ); | |
m.impl("hardshrink", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::hardshrink)) | |
); | |
@@ -41382,9 +38906,6 @@ | |
); | |
m.impl_UNBOXED("hardtanh_backward.grad_input", &VariableType::hardtanh_backward_out_grad_input); | |
m.impl_UNBOXED("hardtanh.out", &VariableType::hardtanh_out_out); | |
- m.impl("hinge_embedding_loss", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::hinge_embedding_loss)) | |
- ); | |
m.impl("histc", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::histc)) | |
); | |
@@ -41393,9 +38914,6 @@ | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::hspmm)) | |
); | |
m.impl_UNBOXED("hspmm.out", &VariableType::hspmm_out_out); | |
- m.impl("ifft", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::ifft)) | |
- ); | |
m.impl("im2col", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::im2col)) | |
); | |
@@ -41404,45 +38922,19 @@ | |
); | |
m.impl_UNBOXED("im2col_backward.grad_input", &VariableType::im2col_backward_out_grad_input); | |
m.impl_UNBOXED("im2col.out", &VariableType::im2col_out_out); | |
- m.impl("imag", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::imag)) | |
- ); | |
m.impl_UNBOXED("index.Tensor", &VariableType::index_Tensor); | |
- m.impl("index_add", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::index_add)) | |
- ); | |
- m.impl_UNBOXED("index_add.dimname", &VariableType::index_add_dimname); | |
m.impl_UNBOXED("index_add_", &VariableType::index_add_); | |
- m.impl("index_copy", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::index_copy)) | |
- ); | |
- m.impl_UNBOXED("index_copy.dimname", &VariableType::index_copy_dimname); | |
m.impl_UNBOXED("index_copy_", &VariableType::index_copy_); | |
- m.impl_UNBOXED("index_copy_.dimname", &VariableType::index_copy__dimname); | |
- m.impl("index_fill.int_Scalar", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::index_fill_int_Scalar)) | |
- ); | |
- m.impl("index_fill.int_Tensor", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::index_fill_int_Tensor)) | |
- ); | |
- m.impl_UNBOXED("index_fill.Dimname_Scalar", &VariableType::index_fill_Dimname_Scalar); | |
- m.impl_UNBOXED("index_fill.Dimname_Tensor", &VariableType::index_fill_Dimname_Tensor); | |
m.impl_UNBOXED("index_fill_.int_Scalar", &VariableType::index_fill__int_Scalar); | |
m.impl_UNBOXED("index_fill_.int_Tensor", &VariableType::index_fill__int_Tensor); | |
- m.impl_UNBOXED("index_fill_.Dimname_Scalar", &VariableType::index_fill__Dimname_Scalar); | |
- m.impl_UNBOXED("index_fill_.Dimname_Tensor", &VariableType::index_fill__Dimname_Tensor); | |
- m.impl_UNBOXED("index_put", &VariableType::index_put); | |
m.impl_UNBOXED("index_put_", &VariableType::index_put_); | |
m.impl("index_select", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::index_select)) | |
); | |
- m.impl_UNBOXED("index_select.dimname", &VariableType::index_select_dimname); | |
m.impl_UNBOXED("index_select.out", &VariableType::index_select_out_out); | |
- m.impl_UNBOXED("index_select.dimname_out", &VariableType::index_select_out_dimname_out); | |
m.impl("indices", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::indices)) | |
); | |
- m.impl_UNBOXED("instance_norm", &VariableType::instance_norm); | |
m.impl("int_repr", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::int_repr)) | |
); | |
@@ -41450,66 +38942,17 @@ | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::inverse)) | |
); | |
m.impl_UNBOXED("inverse.out", &VariableType::inverse_out_out); | |
- m.impl("irfft", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::irfft)) | |
- ); | |
m.impl("is_coalesced", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::is_coalesced)) | |
); | |
- m.impl("is_complex", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::is_complex)) | |
- ); | |
- m.impl("is_distributed", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::is_distributed)) | |
- ); | |
- m.impl("is_floating_point", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::is_floating_point)) | |
- ); | |
- m.impl("is_nonzero", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::is_nonzero)) | |
- ); | |
- m.impl("is_pinned", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::is_pinned)) | |
- ); | |
- m.impl("is_same_size", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::is_same_size)) | |
- ); | |
m.impl("is_set_to", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::is_set_to)) | |
); | |
- m.impl("is_signed", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::is_signed)) | |
- ); | |
- m.impl("is_vulkan_available", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::is_vulkan_available)) | |
- ); | |
- m.impl("isclose", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::isclose)) | |
- ); | |
- m.impl("isfinite", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::isfinite)) | |
- ); | |
- m.impl("isinf", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::isinf)) | |
- ); | |
m.impl("isnan", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::isnan)) | |
); | |
- m.impl("isneginf", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::isneginf)) | |
- ); | |
m.impl_UNBOXED("isneginf.out", &VariableType::isneginf_out_out); | |
- m.impl("isposinf", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::isposinf)) | |
- ); | |
m.impl_UNBOXED("isposinf.out", &VariableType::isposinf_out_out); | |
- m.impl("isreal", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::isreal)) | |
- ); | |
- m.impl_UNBOXED("istft", &VariableType::istft); | |
- m.impl("item", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::item)) | |
- ); | |
m.impl("kl_div", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::kl_div)) | |
); | |
@@ -41519,9 +38962,7 @@ | |
m.impl("kthvalue", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::kthvalue)) | |
); | |
- m.impl_UNBOXED("kthvalue.dimname", &VariableType::kthvalue_dimname); | |
m.impl_UNBOXED("kthvalue.values", &VariableType::kthvalue_out_values); | |
- m.impl_UNBOXED("kthvalue.dimname_out", &VariableType::kthvalue_out_dimname_out); | |
m.impl("l1_loss", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::l1_loss)) | |
); | |
@@ -41530,12 +38971,6 @@ | |
); | |
m.impl_UNBOXED("l1_loss_backward.grad_input", &VariableType::l1_loss_backward_out_grad_input); | |
m.impl_UNBOXED("l1_loss.out", &VariableType::l1_loss_out_out); | |
- m.impl_UNBOXED("layer_norm", &VariableType::layer_norm); | |
- m.impl("lcm", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::lcm)) | |
- ); | |
- m.impl_UNBOXED("lcm_", &VariableType::lcm_); | |
- m.impl_UNBOXED("lcm.out", &VariableType::lcm_out_out); | |
m.impl("le.Scalar", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::le_Scalar)) | |
); | |
@@ -41569,10 +39004,6 @@ | |
); | |
m.impl_UNBOXED("lgamma_", &VariableType::lgamma_); | |
m.impl_UNBOXED("lgamma.out", &VariableType::lgamma_out_out); | |
- m.impl_UNBOXED("linear", &VariableType::linear); | |
- m.impl("linspace", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::linspace)) | |
- ); | |
m.impl_UNBOXED("linspace.out", &VariableType::linspace_out_out); | |
m.impl("log", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::log)) | |
@@ -41595,9 +39026,6 @@ | |
m.impl_UNBOXED("log_", &VariableType::log_); | |
m.impl_UNBOXED("log_normal_", &VariableType::log_normal_); | |
m.impl_UNBOXED("log.out", &VariableType::log_out_out); | |
- m.impl("log_sigmoid", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::log_sigmoid)) | |
- ); | |
m.impl("log_sigmoid_backward", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::log_sigmoid_backward)) | |
); | |
@@ -41606,11 +39034,6 @@ | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::log_sigmoid_forward)) | |
); | |
m.impl_UNBOXED("log_sigmoid_forward.output", &VariableType::log_sigmoid_forward_out_output); | |
- m.impl_UNBOXED("log_sigmoid.out", &VariableType::log_sigmoid_out_out); | |
- m.impl("log_softmax.int", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::log_softmax_int)) | |
- ); | |
- m.impl_UNBOXED("log_softmax.Dimname", &VariableType::log_softmax_Dimname); | |
m.impl("logaddexp", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::logaddexp)) | |
); | |
@@ -41622,58 +39045,25 @@ | |
m.impl("logcumsumexp", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::logcumsumexp)) | |
); | |
- m.impl_UNBOXED("logcumsumexp.dimname", &VariableType::logcumsumexp_dimname); | |
m.impl_UNBOXED("logcumsumexp.out", &VariableType::logcumsumexp_out_out); | |
- m.impl_UNBOXED("logcumsumexp.dimname_out", &VariableType::logcumsumexp_out_dimname_out); | |
m.impl("logdet", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::logdet)) | |
); | |
- m.impl("logical_and", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::logical_and)) | |
- ); | |
- m.impl_UNBOXED("logical_and_", &VariableType::logical_and_); | |
m.impl_UNBOXED("logical_and.out", &VariableType::logical_and_out_out); | |
- m.impl("logical_not", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::logical_not)) | |
- ); | |
- m.impl_UNBOXED("logical_not_", &VariableType::logical_not_); | |
m.impl_UNBOXED("logical_not.out", &VariableType::logical_not_out_out); | |
- m.impl("logical_or", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::logical_or)) | |
- ); | |
- m.impl_UNBOXED("logical_or_", &VariableType::logical_or_); | |
m.impl_UNBOXED("logical_or.out", &VariableType::logical_or_out_out); | |
- m.impl("logical_xor", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::logical_xor)) | |
- ); | |
- m.impl_UNBOXED("logical_xor_", &VariableType::logical_xor_); | |
m.impl_UNBOXED("logical_xor.out", &VariableType::logical_xor_out_out); | |
m.impl("logit", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::logit)) | |
); | |
m.impl_UNBOXED("logit_", &VariableType::logit_); | |
- m.impl("logit_backward", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::logit_backward)) | |
- ); | |
m.impl_UNBOXED("logit_backward.grad_input", &VariableType::logit_backward_out_grad_input); | |
m.impl_UNBOXED("logit.out", &VariableType::logit_out_out); | |
- m.impl("logspace", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::logspace)) | |
- ); | |
m.impl_UNBOXED("logspace.out", &VariableType::logspace_out_out); | |
m.impl("logsumexp", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::logsumexp)) | |
); | |
- m.impl_UNBOXED("logsumexp.names", &VariableType::logsumexp_names); | |
m.impl_UNBOXED("logsumexp.out", &VariableType::logsumexp_out_out); | |
- m.impl_UNBOXED("logsumexp.names_out", &VariableType::logsumexp_out_names_out); | |
- m.impl("lstm.input", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::lstm_input)) | |
- ); | |
- m.impl("lstm.data", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::lstm_data)) | |
- ); | |
- m.impl_UNBOXED("lstm_cell", &VariableType::lstm_cell); | |
m.impl("lstsq", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::lstsq)) | |
); | |
@@ -41692,42 +39082,16 @@ | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::lu_solve)) | |
); | |
m.impl_UNBOXED("lu_solve.out", &VariableType::lu_solve_out_out); | |
- m.impl("margin_ranking_loss", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::margin_ranking_loss)) | |
- ); | |
- m.impl("masked_fill.Scalar", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::masked_fill_Scalar)) | |
- ); | |
- m.impl("masked_fill.Tensor", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::masked_fill_Tensor)) | |
- ); | |
m.impl_UNBOXED("masked_fill_.Scalar", &VariableType::masked_fill__Scalar); | |
m.impl_UNBOXED("masked_fill_.Tensor", &VariableType::masked_fill__Tensor); | |
- m.impl("masked_scatter", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::masked_scatter)) | |
- ); | |
m.impl_UNBOXED("masked_scatter_", &VariableType::masked_scatter_); | |
m.impl("masked_select", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::masked_select)) | |
); | |
m.impl_UNBOXED("masked_select.out", &VariableType::masked_select_out_out); | |
- m.impl("matmul", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::matmul)) | |
- ); | |
- m.impl_UNBOXED("matmul.out", &VariableType::matmul_out_out); | |
- m.impl("matrix_power", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::matrix_power)) | |
- ); | |
- m.impl("matrix_rank.tol", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::matrix_rank_tol)) | |
- ); | |
- m.impl("matrix_rank", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::matrix_rank)) | |
- ); | |
m.impl("max.dim", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::max_dim)) | |
); | |
- m.impl_UNBOXED("max.names_dim", &VariableType::max_names_dim); | |
m.impl("max.other", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::max_other)) | |
); | |
@@ -41735,17 +39099,7 @@ | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::max)) | |
); | |
m.impl_UNBOXED("max.dim_max", &VariableType::max_out_dim_max); | |
- m.impl_UNBOXED("max.names_dim_max", &VariableType::max_out_names_dim_max); | |
m.impl_UNBOXED("max.out", &VariableType::max_out_out); | |
- m.impl("max_pool1d", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::max_pool1d)) | |
- ); | |
- m.impl("max_pool1d_with_indices", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::max_pool1d_with_indices)) | |
- ); | |
- m.impl("max_pool2d", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::max_pool2d)) | |
- ); | |
m.impl("max_pool2d_with_indices", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::max_pool2d_with_indices)) | |
); | |
@@ -41754,9 +39108,6 @@ | |
); | |
m.impl_UNBOXED("max_pool2d_with_indices_backward.grad_input", &VariableType::max_pool2d_with_indices_backward_out_grad_input); | |
m.impl_UNBOXED("max_pool2d_with_indices.out", &VariableType::max_pool2d_with_indices_out_out); | |
- m.impl("max_pool3d", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::max_pool3d)) | |
- ); | |
m.impl("max_pool3d_with_indices", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::max_pool3d_with_indices)) | |
); | |
@@ -41781,35 +39132,23 @@ | |
); | |
m.impl_UNBOXED("max_unpool3d_backward.grad_input", &VariableType::max_unpool3d_backward_out_grad_input); | |
m.impl_UNBOXED("max_unpool3d.out", &VariableType::max_unpool3d_out_out); | |
- m.impl("max_values", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::max_values)) | |
- ); | |
- m.impl_UNBOXED("max_values.names", &VariableType::max_values_names); | |
m.impl("mean", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::mean)) | |
); | |
m.impl("mean.dim", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::mean_dim)) | |
); | |
- m.impl_UNBOXED("mean.names_dim", &VariableType::mean_names_dim); | |
m.impl_UNBOXED("mean.out", &VariableType::mean_out_out); | |
- m.impl_UNBOXED("mean.names_out", &VariableType::mean_out_names_out); | |
m.impl("median.dim", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::median_dim)) | |
); | |
- m.impl_UNBOXED("median.names_dim", &VariableType::median_names_dim); | |
m.impl("median", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::median)) | |
); | |
m.impl_UNBOXED("median.dim_values", &VariableType::median_out_dim_values); | |
- m.impl_UNBOXED("median.names_dim_values", &VariableType::median_out_names_dim_values); | |
- m.impl("meshgrid", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::meshgrid)) | |
- ); | |
m.impl("min.dim", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::min_dim)) | |
); | |
- m.impl_UNBOXED("min.names_dim", &VariableType::min_names_dim); | |
m.impl("min.other", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::min_other)) | |
); | |
@@ -41817,12 +39156,7 @@ | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::min)) | |
); | |
m.impl_UNBOXED("min.dim_min", &VariableType::min_out_dim_min); | |
- m.impl_UNBOXED("min.names_dim_min", &VariableType::min_out_names_dim_min); | |
m.impl_UNBOXED("min.out", &VariableType::min_out_out); | |
- m.impl("min_values", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::min_values)) | |
- ); | |
- m.impl_UNBOXED("min_values.names", &VariableType::min_values_names); | |
m.impl_UNBOXED("miopen_batch_norm", &VariableType::miopen_batch_norm); | |
m.impl_UNBOXED("miopen_batch_norm_backward", &VariableType::miopen_batch_norm_backward); | |
m.impl_UNBOXED("miopen_convolution", &VariableType::miopen_convolution); | |
@@ -41867,12 +39201,6 @@ | |
m.impl("mkldnn_convolution_backward", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::mkldnn_convolution_backward)) | |
); | |
- m.impl("mkldnn_convolution_backward_input", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::mkldnn_convolution_backward_input)) | |
- ); | |
- m.impl("mkldnn_convolution_backward_weights", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::mkldnn_convolution_backward_weights)) | |
- ); | |
m.impl_UNBOXED("mkldnn_linear", &VariableType::mkldnn_linear); | |
m.impl("mkldnn_max_pool2d", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::mkldnn_max_pool2d)) | |
@@ -41893,15 +39221,7 @@ | |
m.impl("mode", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::mode)) | |
); | |
- m.impl_UNBOXED("mode.dimname", &VariableType::mode_dimname); | |
m.impl_UNBOXED("mode.values", &VariableType::mode_out_values); | |
- m.impl_UNBOXED("mode.dimname_out", &VariableType::mode_out_dimname_out); | |
- m.impl("movedim.intlist", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::movedim_intlist)) | |
- ); | |
- m.impl("movedim.int", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::movedim_int)) | |
- ); | |
m.impl("mse_loss", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::mse_loss)) | |
); | |
@@ -41923,9 +39243,6 @@ | |
m.impl_UNBOXED("multi_margin_loss_backward", &VariableType::multi_margin_loss_backward); | |
m.impl_UNBOXED("multi_margin_loss_backward.grad_input", &VariableType::multi_margin_loss_backward_out_grad_input); | |
m.impl_UNBOXED("multi_margin_loss.out", &VariableType::multi_margin_loss_out_out); | |
- m.impl("multilabel_margin_loss", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::multilabel_margin_loss)) | |
- ); | |
m.impl("multilabel_margin_loss_backward", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::multilabel_margin_loss_backward)) | |
); | |
@@ -41934,7 +39251,6 @@ | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::multilabel_margin_loss_forward)) | |
); | |
m.impl_UNBOXED("multilabel_margin_loss_forward.output", &VariableType::multilabel_margin_loss_forward_out_output); | |
- m.impl_UNBOXED("multilabel_margin_loss.out", &VariableType::multilabel_margin_loss_out_out); | |
m.impl_UNBOXED("multinomial", &VariableType::multinomial); | |
m.impl_UNBOXED("multinomial.out", &VariableType::multinomial_out_out); | |
m.impl("mv", | |
@@ -41945,12 +39261,6 @@ | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::mvlgamma)) | |
); | |
m.impl_UNBOXED("mvlgamma_", &VariableType::mvlgamma_); | |
- m.impl("narrow", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::narrow)) | |
- ); | |
- m.impl("narrow.Tensor", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::narrow_Tensor)) | |
- ); | |
m.impl("narrow_copy", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::narrow_copy)) | |
); | |
@@ -41979,33 +39289,17 @@ | |
); | |
m.impl_UNBOXED("neg_", &VariableType::neg_); | |
m.impl_UNBOXED("neg.out", &VariableType::neg_out_out); | |
- m.impl("new_empty", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::new_empty)) | |
- ); | |
- m.impl("new_full", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::new_full)) | |
- ); | |
- m.impl("new_zeros", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::new_zeros)) | |
- ); | |
- m.impl_UNBOXED("nll_loss", &VariableType::nll_loss); | |
- m.impl_UNBOXED("nll_loss2d", &VariableType::nll_loss2d); | |
m.impl_UNBOXED("nll_loss2d_backward", &VariableType::nll_loss2d_backward); | |
m.impl_UNBOXED("nll_loss2d_backward.grad_input", &VariableType::nll_loss2d_backward_out_grad_input); | |
m.impl_UNBOXED("nll_loss2d_forward", &VariableType::nll_loss2d_forward); | |
m.impl_UNBOXED("nll_loss2d_forward.output", &VariableType::nll_loss2d_forward_out_output); | |
- m.impl_UNBOXED("nll_loss2d.out", &VariableType::nll_loss2d_out_out); | |
m.impl_UNBOXED("nll_loss_backward", &VariableType::nll_loss_backward); | |
m.impl_UNBOXED("nll_loss_backward.grad_input", &VariableType::nll_loss_backward_out_grad_input); | |
m.impl_UNBOXED("nll_loss_forward", &VariableType::nll_loss_forward); | |
m.impl_UNBOXED("nll_loss_forward.output", &VariableType::nll_loss_forward_out_output); | |
- m.impl_UNBOXED("nll_loss.out", &VariableType::nll_loss_out_out); | |
m.impl("nonzero", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::nonzero)) | |
); | |
- m.impl("nonzero_numpy", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::nonzero_numpy)) | |
- ); | |
m.impl_UNBOXED("nonzero.out", &VariableType::nonzero_out_out); | |
m.impl("norm.ScalarOpt_dtype", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::norm_ScalarOpt_dtype)) | |
@@ -42019,46 +39313,15 @@ | |
m.impl("norm.ScalarOpt_dim", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::norm_ScalarOpt_dim)) | |
); | |
- m.impl_UNBOXED("norm.names_ScalarOpt_dim_dtype", &VariableType::norm_names_ScalarOpt_dim_dtype); | |
- m.impl_UNBOXED("norm.names_ScalarOpt_dim", &VariableType::norm_names_ScalarOpt_dim); | |
- m.impl("norm_except_dim", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::norm_except_dim)) | |
- ); | |
m.impl_UNBOXED("norm.dtype_out", &VariableType::norm_out_dtype_out); | |
m.impl_UNBOXED("norm.out", &VariableType::norm_out_out); | |
- m.impl_UNBOXED("norm.names_dtype_out", &VariableType::norm_out_names_dtype_out); | |
- m.impl_UNBOXED("norm.names_out", &VariableType::norm_out_names_out); | |
m.impl_UNBOXED("normal.Tensor_float", &VariableType::normal_Tensor_float); | |
m.impl_UNBOXED("normal.float_Tensor", &VariableType::normal_float_Tensor); | |
m.impl_UNBOXED("normal.Tensor_Tensor", &VariableType::normal_Tensor_Tensor); | |
- m.impl_UNBOXED("normal.float_float", &VariableType::normal_float_float); | |
m.impl_UNBOXED("normal_", &VariableType::normal_); | |
m.impl_UNBOXED("normal.Tensor_float_out", &VariableType::normal_out_Tensor_float_out); | |
m.impl_UNBOXED("normal.float_Tensor_out", &VariableType::normal_out_float_Tensor_out); | |
m.impl_UNBOXED("normal.Tensor_Tensor_out", &VariableType::normal_out_Tensor_Tensor_out); | |
- m.impl_UNBOXED("normal.float_float_out", &VariableType::normal_out_float_float_out); | |
- m.impl("nuclear_norm", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::nuclear_norm)) | |
- ); | |
- m.impl("nuclear_norm.dim", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::nuclear_norm_dim)) | |
- ); | |
- m.impl_UNBOXED("nuclear_norm.out", &VariableType::nuclear_norm_out_out); | |
- m.impl_UNBOXED("nuclear_norm.dim_out", &VariableType::nuclear_norm_out_dim_out); | |
- m.impl("numpy_T", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::numpy_T)) | |
- ); | |
- m.impl("one_hot", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::one_hot)) | |
- ); | |
- m.impl_UNBOXED("ones.names", &VariableType::ones_names); | |
- m.impl("ones", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::ones)) | |
- ); | |
- m.impl("ones_like", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::ones_like)) | |
- ); | |
- m.impl_UNBOXED("ones.out", &VariableType::ones_out_out); | |
m.impl("orgqr", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::orgqr)) | |
); | |
@@ -42067,32 +39330,13 @@ | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::ormqr)) | |
); | |
m.impl_UNBOXED("ormqr.out", &VariableType::ormqr_out_out); | |
- m.impl("pairwise_distance", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::pairwise_distance)) | |
- ); | |
- m.impl("pdist", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::pdist)) | |
- ); | |
m.impl("permute", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::permute)) | |
); | |
- m.impl("pin_memory", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::pin_memory)) | |
- ); | |
- m.impl("pinverse", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::pinverse)) | |
- ); | |
- m.impl("pixel_shuffle", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::pixel_shuffle)) | |
- ); | |
m.impl_UNBOXED("poisson", &VariableType::poisson); | |
- m.impl("poisson_nll_loss", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::poisson_nll_loss)) | |
- ); | |
m.impl("polygamma", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::polygamma)) | |
); | |
- m.impl_UNBOXED("polygamma_", &VariableType::polygamma_); | |
m.impl_UNBOXED("polygamma.out", &VariableType::polygamma_out_out); | |
m.impl("pow.Tensor_Scalar", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::pow_Tensor_Scalar)) | |
@@ -42120,12 +39364,7 @@ | |
m.impl("prod.dim_int", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::prod_dim_int)) | |
); | |
- m.impl_UNBOXED("prod.dim_Dimname", &VariableType::prod_dim_Dimname); | |
m.impl_UNBOXED("prod.int_out", &VariableType::prod_out_int_out); | |
- m.impl_UNBOXED("prod.Dimname_out", &VariableType::prod_out_Dimname_out); | |
- m.impl("promote_types", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::promote_types)) | |
- ); | |
m.impl_UNBOXED("put_", &VariableType::put_); | |
m.impl("q_per_channel_axis", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::q_per_channel_axis)) | |
@@ -42159,91 +39398,24 @@ | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::quantize_per_tensor_tensors)) | |
); | |
m.impl_UNBOXED("quantized_batch_norm", &VariableType::quantized_batch_norm); | |
- m.impl("quantized_gru_cell", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::quantized_gru_cell)) | |
- ); | |
- m.impl("quantized_lstm_cell", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::quantized_lstm_cell)) | |
- ); | |
m.impl("quantized_max_pool2d", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::quantized_max_pool2d)) | |
); | |
- m.impl("quantized_rnn_relu_cell", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::quantized_rnn_relu_cell)) | |
- ); | |
- m.impl("quantized_rnn_tanh_cell", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::quantized_rnn_tanh_cell)) | |
- ); | |
m.impl("rad2deg", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::rad2deg)) | |
); | |
m.impl_UNBOXED("rad2deg_", &VariableType::rad2deg_); | |
m.impl_UNBOXED("rad2deg.out", &VariableType::rad2deg_out_out); | |
- m.impl_UNBOXED("rand.names", &VariableType::rand_names); | |
- m.impl_UNBOXED("rand.generator_with_names", &VariableType::rand_generator_with_names); | |
- m.impl("rand", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::rand)) | |
- ); | |
- m.impl_UNBOXED("rand.generator", &VariableType::rand_generator); | |
- m.impl("rand_like", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::rand_like)) | |
- ); | |
- m.impl_UNBOXED("rand.out", &VariableType::rand_out_out); | |
- m.impl_UNBOXED("rand.generator_out", &VariableType::rand_out_generator_out); | |
- m.impl("randint", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::randint)) | |
- ); | |
- m.impl_UNBOXED("randint.generator", &VariableType::randint_generator); | |
- m.impl("randint.low", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::randint_low)) | |
- ); | |
- m.impl_UNBOXED("randint.low_generator", &VariableType::randint_low_generator); | |
- m.impl("randint_like", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::randint_like)) | |
- ); | |
- m.impl("randint_like.low_dtype", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::randint_like_low_dtype)) | |
- ); | |
- m.impl_UNBOXED("randint.out", &VariableType::randint_out_out); | |
- m.impl_UNBOXED("randint.generator_out", &VariableType::randint_out_generator_out); | |
- m.impl_UNBOXED("randint.low_out", &VariableType::randint_out_low_out); | |
- m.impl_UNBOXED("randint.low_generator_out", &VariableType::randint_out_low_generator_out); | |
- m.impl("randn", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::randn)) | |
- ); | |
- m.impl_UNBOXED("randn.generator", &VariableType::randn_generator); | |
- m.impl_UNBOXED("randn.names", &VariableType::randn_names); | |
- m.impl_UNBOXED("randn.generator_with_names", &VariableType::randn_generator_with_names); | |
- m.impl("randn_like", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::randn_like)) | |
- ); | |
- m.impl_UNBOXED("randn.out", &VariableType::randn_out_out); | |
- m.impl_UNBOXED("randn.generator_out", &VariableType::randn_out_generator_out); | |
m.impl_UNBOXED("random_.from", &VariableType::random__from); | |
m.impl_UNBOXED("random_.to", &VariableType::random__to); | |
m.impl_UNBOXED("random_", &VariableType::random_); | |
- m.impl("randperm", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::randperm)) | |
- ); | |
- m.impl_UNBOXED("randperm.generator", &VariableType::randperm_generator); | |
- m.impl_UNBOXED("randperm.out", &VariableType::randperm_out_out); | |
m.impl_UNBOXED("randperm.generator_out", &VariableType::randperm_out_generator_out); | |
- m.impl("range.step", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::range_step)) | |
- ); | |
- m.impl("range", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::range)) | |
- ); | |
m.impl_UNBOXED("range.out", &VariableType::range_out_out); | |
- m.impl("real", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::real)) | |
- ); | |
m.impl("reciprocal", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::reciprocal)) | |
); | |
m.impl_UNBOXED("reciprocal_", &VariableType::reciprocal_); | |
m.impl_UNBOXED("reciprocal.out", &VariableType::reciprocal_out_out); | |
- m.impl_UNBOXED("refine_names", &VariableType::refine_names); | |
m.impl("reflection_pad1d", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::reflection_pad1d)) | |
); | |
@@ -42274,8 +39446,6 @@ | |
m.impl_UNBOXED("remainder_.Tensor", &VariableType::remainder__Tensor); | |
m.impl_UNBOXED("remainder.Scalar_out", &VariableType::remainder_out_Scalar_out); | |
m.impl_UNBOXED("remainder.Tensor_out", &VariableType::remainder_out_Tensor_out); | |
- m.impl_UNBOXED("rename", &VariableType::rename); | |
- m.impl_UNBOXED("rename_", &VariableType::rename_); | |
m.impl("renorm", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::renorm)) | |
); | |
@@ -42287,12 +39457,6 @@ | |
m.impl("repeat_interleave.Tensor", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::repeat_interleave_Tensor)) | |
); | |
- m.impl("repeat_interleave.self_Tensor", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::repeat_interleave_self_Tensor)) | |
- ); | |
- m.impl("repeat_interleave.self_int", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::repeat_interleave_self_int)) | |
- ); | |
m.impl("replication_pad1d", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::replication_pad1d)) | |
); | |
@@ -42317,41 +39481,6 @@ | |
); | |
m.impl_UNBOXED("replication_pad3d_backward.grad_input", &VariableType::replication_pad3d_backward_out_grad_input); | |
m.impl_UNBOXED("replication_pad3d.out", &VariableType::replication_pad3d_out_out); | |
- m.impl("reshape", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::reshape)) | |
- ); | |
- m.impl("reshape_as", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::reshape_as)) | |
- ); | |
- m.impl("result_type.Tensor", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::result_type_Tensor)) | |
- ); | |
- m.impl("result_type.Scalar", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::result_type_Scalar)) | |
- ); | |
- m.impl("result_type.Scalar_Tensor", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::result_type_Scalar_Tensor)) | |
- ); | |
- m.impl("result_type.Scalar_Scalar", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::result_type_Scalar_Scalar)) | |
- ); | |
- m.impl("rfft", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::rfft)) | |
- ); | |
- m.impl("rnn_relu.input", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::rnn_relu_input)) | |
- ); | |
- m.impl("rnn_relu.data", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::rnn_relu_data)) | |
- ); | |
- m.impl_UNBOXED("rnn_relu_cell", &VariableType::rnn_relu_cell); | |
- m.impl("rnn_tanh.input", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::rnn_tanh_input)) | |
- ); | |
- m.impl("rnn_tanh.data", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::rnn_tanh_data)) | |
- ); | |
- m.impl_UNBOXED("rnn_tanh_cell", &VariableType::rnn_tanh_cell); | |
m.impl("roll", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::roll)) | |
); | |
@@ -42363,8 +39492,6 @@ | |
); | |
m.impl_UNBOXED("round_", &VariableType::round_); | |
m.impl_UNBOXED("round.out", &VariableType::round_out_out); | |
- m.impl_UNBOXED("rrelu", &VariableType::rrelu); | |
- m.impl_UNBOXED("rrelu_", &VariableType::rrelu_); | |
m.impl_UNBOXED("rrelu_with_noise", &VariableType::rrelu_with_noise); | |
m.impl_UNBOXED("rrelu_with_noise_", &VariableType::rrelu_with_noise_); | |
m.impl("rrelu_with_noise_backward", | |
@@ -42382,25 +39509,10 @@ | |
m.impl("rsub.Scalar", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::rsub_Scalar)) | |
); | |
- m.impl("scalar_tensor", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::scalar_tensor)) | |
- ); | |
- m.impl("scatter.src", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::scatter_src)) | |
- ); | |
- m.impl("scatter.value", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::scatter_value)) | |
- ); | |
- m.impl_UNBOXED("scatter.dimname_src", &VariableType::scatter_dimname_src); | |
- m.impl_UNBOXED("scatter.dimname_value", &VariableType::scatter_dimname_value); | |
m.impl_UNBOXED("scatter_.src", &VariableType::scatter__src); | |
m.impl_UNBOXED("scatter_.value", &VariableType::scatter__value); | |
m.impl_UNBOXED("scatter_.reduce", &VariableType::scatter__reduce); | |
m.impl_UNBOXED("scatter_.value_reduce", &VariableType::scatter__value_reduce); | |
- m.impl("scatter_add", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::scatter_add)) | |
- ); | |
- m.impl_UNBOXED("scatter_add.dimname", &VariableType::scatter_add_dimname); | |
m.impl_UNBOXED("scatter_add_", &VariableType::scatter_add_); | |
m.impl("searchsorted.Tensor", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::searchsorted_Tensor)) | |
@@ -42409,14 +39521,9 @@ | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::searchsorted_Scalar)) | |
); | |
m.impl_UNBOXED("searchsorted.Tensor_out", &VariableType::searchsorted_out_Tensor_out); | |
- m.impl_UNBOXED("select.Dimname", &VariableType::select_Dimname); | |
m.impl("select.int", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::select_int)) | |
); | |
- m.impl("selu", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::selu)) | |
- ); | |
- m.impl_UNBOXED("selu_", &VariableType::selu_); | |
m.impl_UNBOXED("set_.source_Storage", &VariableType::set__source_Storage); | |
m.impl_UNBOXED("set_.source_Storage_storage_offset", &VariableType::set__source_Storage_storage_offset); | |
m.impl_UNBOXED("set_.source_Tensor", &VariableType::set__source_Tensor); | |
@@ -42436,17 +39543,11 @@ | |
); | |
m.impl_UNBOXED("sign_", &VariableType::sign_); | |
m.impl_UNBOXED("sign.out", &VariableType::sign_out_out); | |
- m.impl("signbit", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::signbit)) | |
- ); | |
m.impl_UNBOXED("signbit.out", &VariableType::signbit_out_out); | |
m.impl("silu", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::silu)) | |
); | |
m.impl_UNBOXED("silu_", &VariableType::silu_); | |
- m.impl("silu_backward", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::silu_backward)) | |
- ); | |
m.impl_UNBOXED("silu.out", &VariableType::silu_out_out); | |
m.impl("sin", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::sin)) | |
@@ -42458,24 +39559,18 @@ | |
); | |
m.impl_UNBOXED("sinh_", &VariableType::sinh_); | |
m.impl_UNBOXED("sinh.out", &VariableType::sinh_out_out); | |
- m.impl("size.int", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::size_int)) | |
- ); | |
- m.impl_UNBOXED("size.Dimname", &VariableType::size_Dimname); | |
m.impl("slice.Tensor", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::slice_Tensor)) | |
); | |
m.impl("slogdet", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::slogdet)) | |
); | |
- m.impl_UNBOXED("slow_conv3d", &VariableType::slow_conv3d); | |
m.impl("slow_conv3d_backward.output_mask", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::slow_conv3d_backward_output_mask)) | |
); | |
m.impl_UNBOXED("slow_conv3d_backward.grad_input", &VariableType::slow_conv3d_backward_out_grad_input); | |
m.impl_UNBOXED("slow_conv3d_forward", &VariableType::slow_conv3d_forward); | |
m.impl_UNBOXED("slow_conv3d_forward.output", &VariableType::slow_conv3d_forward_out_output); | |
- m.impl_UNBOXED("slow_conv3d.out", &VariableType::slow_conv3d_out_out); | |
m.impl_UNBOXED("slow_conv_dilated2d", &VariableType::slow_conv_dilated2d); | |
m.impl("slow_conv_dilated2d_backward", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::slow_conv_dilated2d_backward)) | |
@@ -42496,9 +39591,6 @@ | |
); | |
m.impl_UNBOXED("slow_conv_transpose3d_backward.grad_output", &VariableType::slow_conv_transpose3d_backward_out_grad_output); | |
m.impl_UNBOXED("slow_conv_transpose3d.out", &VariableType::slow_conv_transpose3d_out_out); | |
- m.impl("smm", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::smm)) | |
- ); | |
m.impl("smooth_l1_loss", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::smooth_l1_loss)) | |
); | |
@@ -42515,10 +39607,6 @@ | |
); | |
m.impl_UNBOXED("soft_margin_loss_backward.grad_input", &VariableType::soft_margin_loss_backward_out_grad_input); | |
m.impl_UNBOXED("soft_margin_loss.out", &VariableType::soft_margin_loss_out_out); | |
- m.impl("softmax.int", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::softmax_int)) | |
- ); | |
- m.impl_UNBOXED("softmax.Dimname", &VariableType::softmax_Dimname); | |
m.impl("softplus", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::softplus)) | |
); | |
@@ -42542,18 +39630,7 @@ | |
m.impl("sort", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::sort)) | |
); | |
- m.impl_UNBOXED("sort.dimname", &VariableType::sort_dimname); | |
m.impl_UNBOXED("sort.values", &VariableType::sort_out_values); | |
- m.impl_UNBOXED("sort.dimname_values", &VariableType::sort_out_dimname_values); | |
- m.impl("sparse_coo_tensor.size", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::sparse_coo_tensor_size)) | |
- ); | |
- m.impl("sparse_coo_tensor.indices", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::sparse_coo_tensor_indices)) | |
- ); | |
- m.impl("sparse_coo_tensor.indices_size", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::sparse_coo_tensor_indices_size)) | |
- ); | |
m.impl("sparse_dim", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::sparse_dim)) | |
); | |
@@ -42573,23 +39650,14 @@ | |
); | |
m.impl_UNBOXED("sqrt_", &VariableType::sqrt_); | |
m.impl_UNBOXED("sqrt.out", &VariableType::sqrt_out_out); | |
- m.impl("square", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::square)) | |
- ); | |
- m.impl_UNBOXED("square_", &VariableType::square_); | |
m.impl("squeeze", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::squeeze)) | |
); | |
m.impl("squeeze.dim", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::squeeze_dim)) | |
); | |
- m.impl_UNBOXED("squeeze.dimname", &VariableType::squeeze_dimname); | |
m.impl_UNBOXED("squeeze_", &VariableType::squeeze_); | |
m.impl_UNBOXED("squeeze_.dim", &VariableType::squeeze__dim); | |
- m.impl_UNBOXED("squeeze_.dimname", &VariableType::squeeze__dimname); | |
- m.impl("sspaddmm", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::sspaddmm)) | |
- ); | |
m.impl_UNBOXED("sspaddmm.out", &VariableType::sspaddmm_out_out); | |
m.impl("stack", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::stack)) | |
@@ -42601,21 +39669,13 @@ | |
m.impl("std.dim", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::std_dim)) | |
); | |
- m.impl_UNBOXED("std.names_dim", &VariableType::std_names_dim); | |
m.impl("std_mean", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::std_mean)) | |
); | |
m.impl("std_mean.dim", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::std_mean_dim)) | |
); | |
- m.impl_UNBOXED("std_mean.names_dim", &VariableType::std_mean_names_dim); | |
m.impl_UNBOXED("std.out", &VariableType::std_out_out); | |
- m.impl_UNBOXED("std.names_out", &VariableType::std_out_names_out); | |
- m.impl_UNBOXED("stft", &VariableType::stft); | |
- m.impl("stride.int", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::stride_int)) | |
- ); | |
- m.impl_UNBOXED("stride.Dimname", &VariableType::stride_Dimname); | |
m.impl("sub.Tensor", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::sub_Tensor)) | |
); | |
@@ -42631,12 +39691,7 @@ | |
m.impl("sum.dim_IntList", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::sum_dim_IntList)) | |
); | |
- m.impl_UNBOXED("sum.dim_DimnameList", &VariableType::sum_dim_DimnameList); | |
m.impl_UNBOXED("sum.IntList_out", &VariableType::sum_out_IntList_out); | |
- m.impl_UNBOXED("sum.DimnameList_out", &VariableType::sum_out_DimnameList_out); | |
- m.impl("sum_to_size", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::sum_to_size)) | |
- ); | |
m.impl("svd", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::svd)) | |
); | |
@@ -42667,25 +39722,18 @@ | |
); | |
m.impl_UNBOXED("tanh_backward.grad_input", &VariableType::tanh_backward_out_grad_input); | |
m.impl_UNBOXED("tanh.out", &VariableType::tanh_out_out); | |
- m.impl("tensordot", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::tensordot)) | |
- ); | |
- m.impl_UNBOXED("thnn_conv2d", &VariableType::thnn_conv2d); | |
m.impl("thnn_conv2d_backward.output_mask", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::thnn_conv2d_backward_output_mask)) | |
); | |
m.impl_UNBOXED("thnn_conv2d_backward.grad_input", &VariableType::thnn_conv2d_backward_out_grad_input); | |
m.impl_UNBOXED("thnn_conv2d_forward", &VariableType::thnn_conv2d_forward); | |
m.impl_UNBOXED("thnn_conv2d_forward.output", &VariableType::thnn_conv2d_forward_out_output); | |
- m.impl_UNBOXED("thnn_conv2d.out", &VariableType::thnn_conv2d_out_out); | |
- m.impl_UNBOXED("thnn_conv_depthwise2d", &VariableType::thnn_conv_depthwise2d); | |
m.impl("thnn_conv_depthwise2d_backward.output_mask", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::thnn_conv_depthwise2d_backward_output_mask)) | |
); | |
m.impl_UNBOXED("thnn_conv_depthwise2d_backward.grad_input", &VariableType::thnn_conv_depthwise2d_backward_out_grad_input); | |
m.impl_UNBOXED("thnn_conv_depthwise2d_forward", &VariableType::thnn_conv_depthwise2d_forward); | |
m.impl_UNBOXED("thnn_conv_depthwise2d_forward.out", &VariableType::thnn_conv_depthwise2d_forward_out_out); | |
- m.impl_UNBOXED("thnn_conv_depthwise2d.out", &VariableType::thnn_conv_depthwise2d_out_out); | |
m.impl("threshold", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::threshold)) | |
); | |
@@ -42694,30 +39742,12 @@ | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::threshold_backward)) | |
); | |
m.impl_UNBOXED("threshold.out", &VariableType::threshold_out_out); | |
- m.impl("to.dtype_layout", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::to_dtype_layout)) | |
- ); | |
- m.impl("to.device", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::to_device)) | |
- ); | |
- m.impl("to.dtype", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::to_dtype)) | |
- ); | |
- m.impl("to.other", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::to_other)) | |
- ); | |
m.impl("to_dense", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::to_dense)) | |
); | |
- m.impl("to_dense_backward", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::to_dense_backward)) | |
- ); | |
m.impl("to_mkldnn", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::to_mkldnn)) | |
); | |
- m.impl("to_mkldnn_backward", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::to_mkldnn_backward)) | |
- ); | |
m.impl("to_sparse.sparse_dim", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::to_sparse_sparse_dim)) | |
); | |
@@ -42734,14 +39764,7 @@ | |
m.impl("transpose.int", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::transpose_int)) | |
); | |
- m.impl_UNBOXED("transpose.Dimname", &VariableType::transpose_Dimname); | |
m.impl_UNBOXED("transpose_", &VariableType::transpose_); | |
- m.impl("trapz.x", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::trapz_x)) | |
- ); | |
- m.impl("trapz.dx", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::trapz_dx)) | |
- ); | |
m.impl("triangular_solve", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::triangular_solve)) | |
); | |
@@ -42754,9 +39777,6 @@ | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::tril_indices)) | |
); | |
m.impl_UNBOXED("tril.out", &VariableType::tril_out_out); | |
- m.impl("triplet_margin_loss", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::triplet_margin_loss)) | |
- ); | |
m.impl("triu", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::triu)) | |
); | |
@@ -42779,15 +39799,9 @@ | |
); | |
m.impl_UNBOXED("trunc_", &VariableType::trunc_); | |
m.impl_UNBOXED("trunc.out", &VariableType::trunc_out_out); | |
- m.impl("type_as", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::type_as)) | |
- ); | |
m.impl("unbind.int", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::unbind_int)) | |
); | |
- m.impl_UNBOXED("unbind.Dimname", &VariableType::unbind_Dimname); | |
- m.impl_UNBOXED("unflatten.Dimname", &VariableType::unflatten_Dimname); | |
- m.impl_UNBOXED("unflatten.int", &VariableType::unflatten_int); | |
m.impl("unfold", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::unfold)) | |
); | |
@@ -42804,9 +39818,6 @@ | |
m.impl("unique_dim_consecutive", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::unique_dim_consecutive)) | |
); | |
- m.impl("unsafe_chunk", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::unsafe_chunk)) | |
- ); | |
m.impl("unsafe_split.Tensor", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::unsafe_split_Tensor)) | |
); | |
@@ -42890,61 +39901,29 @@ | |
m.impl("values", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::values)) | |
); | |
- m.impl("vander", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::vander)) | |
- ); | |
m.impl("var", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::var)) | |
); | |
m.impl("var.dim", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::var_dim)) | |
); | |
- m.impl_UNBOXED("var.names_dim", &VariableType::var_names_dim); | |
m.impl("var_mean", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::var_mean)) | |
); | |
m.impl("var_mean.dim", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::var_mean_dim)) | |
); | |
- m.impl_UNBOXED("var_mean.names_dim", &VariableType::var_mean_names_dim); | |
m.impl_UNBOXED("var.out", &VariableType::var_out_out); | |
- m.impl_UNBOXED("var.names_out", &VariableType::var_out_names_out); | |
m.impl("view", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::view)) | |
); | |
- m.impl("view_as", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::view_as)) | |
- ); | |
m.impl("view_as_complex", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::view_as_complex)) | |
); | |
m.impl("view_as_real", | |
c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::view_as_real)) | |
); | |
- m.impl("where.self", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::where_self)) | |
- ); | |
- m.impl("where.ScalarSelf", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::where_ScalarSelf)) | |
- ); | |
- m.impl("where.ScalarOther", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::where_ScalarOther)) | |
- ); | |
- m.impl("where.Scalar", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::where_Scalar)) | |
- ); | |
- m.impl("where", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::where)) | |
- ); | |
m.impl_UNBOXED("zero_", &VariableType::zero_); | |
- m.impl_UNBOXED("zeros.names", &VariableType::zeros_names); | |
- m.impl("zeros", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::zeros)) | |
- ); | |
- m.impl("zeros_like", | |
- c10::impl::hacky_wrapper_for_legacy_signatures(TORCH_FN(VariableType::zeros_like)) | |
- ); | |
- m.impl_UNBOXED("zeros.out", &VariableType::zeros_out_out); | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment