Last active
June 20, 2021 12:21
-
-
Save airalcorn2/2ff737106ee02bf103d7cac703558f06 to your computer and use it in GitHub Desktop.
Testing out the synthetic control approach used in Dave et al. (2020).
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# See: https://matheusfacure.github.io/python-causality-handbook/15-Synthetic-Control.html | |
# and: http://ftp.iza.org/dp13670.pdf. | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import pandas as pd | |
import seaborn as sns | |
from datetime import datetime, timedelta | |
from scipy.optimize import fmin_slsqp | |
from toolz import partial | |
state_pops = { | |
"AL": 4_903_185, | |
"AK": 731_545, | |
"AZ": 7_278_717, | |
"AR": 3_017_825, | |
"CA": 39_512_223, | |
"CO": 5_758_736, | |
"CT": 3_565_287, | |
"DE": 973_764, | |
"FL": 21_477_737, | |
"GA": 10_617_423, | |
"HI": 1_415_872, | |
"ID": 1_787_065, | |
"IL": 12_671_821, | |
"IN": 6_732_219, | |
"IA": 3_155_070, | |
"KS": 2_913_314, | |
"KY": 4_467_673, | |
"LA": 4_648_794, | |
"ME": 1_344_212, | |
"MD": 6_045_680, | |
"MA": 6_949_503, | |
"MI": 9_986_857, | |
"MN": 5_639_632, | |
"MS": 2_976_149, | |
"MO": 6_137_428, | |
"MT": 1_068_778, | |
"NE": 1_934_408, | |
"NV": 3_080_156, | |
"NH": 1_359_711, | |
"NJ": 8_882_190, | |
"NM": 2_096_829, | |
"NY": 19_453_561, | |
"NC": 10_488_084, | |
"ND": 762_062, | |
"OH": 11_689_100, | |
"OK": 3_956_971, | |
"OR": 4_217_737, | |
"PA": 12_801_989, | |
"RI": 1_059_361, | |
"SC": 5_148_714, | |
"SD": 884_659, | |
"TN": 6_833_174, | |
"TX": 28_995_881, | |
"UT": 3_205_958, | |
"VT": 623_989, | |
"VA": 8_535_519, | |
"WA": 7_614_893, | |
"WV": 1_792_147, | |
"WI": 5_822_434, | |
"WY": 578_759, | |
} | |
# See footnote 17 in the paper. | |
def loss_w(W, X, y): | |
return np.mean(np.abs(y - X @ W)) | |
# Download and prepare data. | |
# United States data. | |
states_url = "https://covidtracking.com/api/states/daily.csv" | |
df_states = pd.read_csv(states_url).sort_values("date") | |
df_states["date"] = df_states["date"].apply( | |
lambda x: datetime.strptime(str(x), "%Y%m%d") | |
) | |
df_states["population"] = df_states["state"].apply( | |
lambda state: state_pops.get(state, -1) | |
) | |
df_states["cases_per_1000"] = 1000 * df_states["positive"] / df_states["population"] | |
# Countries data. | |
countries_url = "https://covid.ourworldindata.org/data/owid-covid-data.csv" | |
countries_data = pd.read_csv(countries_url) | |
countries_data["cases_per_1000"] = countries_data["total_cases_per_million"] / 1000 | |
# Settings. | |
# From paper. | |
sturgis_rally = datetime.strptime("20200803", "%Y%m%d") | |
prev_days = 28 | |
start_date = sturgis_rally - timedelta(days=prev_days) | |
stop_date = datetime.strptime("20200902", "%Y%m%d") | |
target_state = "SD" | |
exclude_states = {"IA", "MN", "MT", "NE", "ND", "WY"} | |
outcome_var = "cases_per_1000" | |
target_country = "FRA" # ISO code. | |
# Build donor pool. | |
X = [] | |
donor_states = list(set(state_pops) - exclude_states - {target_state}) | |
donor_states.sort() | |
for state in donor_states: | |
df_state = df_states[df_states["state"] == state] | |
df_state = df_state[ | |
(start_date <= df_state["date"]) & (df_state["date"] <= stop_date) | |
] | |
X.append(df_state[outcome_var].values) | |
X = np.stack(X).T | |
# State target. | |
df_state = df_states[df_states["state"] == target_state] | |
df_state = df_state[(start_date <= df_state["date"]) & (df_state["date"] <= stop_date)] | |
# Country target. | |
country_data = countries_data[countries_data["iso_code"] == target_country] | |
country_data["date"] = country_data["date"].apply( | |
lambda x: datetime.strptime(str(x), "%Y-%m-%d") | |
) | |
country_data = country_data[ | |
(start_date <= country_data["date"]) & (country_data["date"] <= stop_date) | |
] | |
targets = { | |
target_state: df_state[outcome_var].values, | |
target_country: country_data[outcome_var].values, | |
} | |
for (locale, y) in targets.items(): | |
print(f"\n{locale}\n") | |
weights = fmin_slsqp( | |
func=partial(loss_w, X=X[:prev_days], y=y[:prev_days]), | |
x0=np.array([1 / X.shape[1]] * X.shape[1]), | |
f_eqcons=lambda x: np.sum(x) - 1, | |
bounds=[(0.0, 1.0)] * X.shape[1], | |
disp=False, | |
) | |
sorted_idxs = np.argsort(-weights) | |
for idx in sorted_idxs: | |
print(f"{donor_states[idx]}: {weights[idx]:.4}") | |
# Figure 5 Panel (c): South Dakota. | |
sns.lineplot(x=df_state["date"], y=y, color="red") | |
fake_y = X @ weights | |
sns.lineplot(x=df_state["date"], y=fake_y, linestyle="--", color="blue") | |
plt.axvline(sturgis_rally, linestyle="--", color="red") | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment