Skip to content

Instantly share code, notes, and snippets.

@aiscool
Last active January 9, 2017 01:03
Show Gist options
  • Save aiscool/b1f399120a9e26c29104151d898ca20c to your computer and use it in GitHub Desktop.
Save aiscool/b1f399120a9e26c29104151d898ca20c to your computer and use it in GitHub Desktop.
Baseline.csv : 97.72% , full.csv : 86.36%
import pandas as pd
from sklearn.metrics import accuracy_score
from sklearn.neural_network import MLPClassifier
df = pd.read_csv('Baseline.csv') #Baseline.csv dengan full.csv
maxi = 0
max_i = 0
max_j = 0
for i in range(10):
data = df.sample(frac=0.7, random_state=i)
data_t = df.drop(data.index)
train_in = data.drop('Features',1);
train_out = data['Features'];
test_in = data_t.drop('Features',1);
test_out = data_t['Features'];
for j in range(10):
clf = MLPClassifier(max_iter = 500, solver='lbfgs', alpha=1e-5,hidden_layer_sizes=(100), random_state=j)
clf = clf.fit(train_in,train_out)
predicted = clf.predict(test_in)
if maxi < accuracy_score(test_out,predicted):
maxi = accuracy_score(test_out,predicted)
max_i = i
max_j = j
print(str(maxi*100)+"% "+str(max_i)+" "+str(max_j))
print("The best is : "+str(maxi*100)+"% "+str(max_i)+" "+str(max_j))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment