Last active
October 31, 2016 11:47
-
-
Save aitatanit/ff9eada5a51f946fc9941c6bfbdcb69a to your computer and use it in GitHub Desktop.
TM mode (P-polarization) of EM wave at oblique incidence at an interface between two media
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
% Oblique Incidence - TM Mode (P-Polarization) | |
% Author: Jimmy Touma (10/27/2016) | |
% | |
% Adapted from: | |
% Edgar Fuentes (Club de LaTeX UC member) | |
% http://www.texample.net/tikz/examples/oblique-incidence/ | |
\documentclass{article} | |
\usepackage{tikz} | |
\usetikzlibrary{% | |
decorations.pathreplacing,% | |
decorations.pathmorphing% | |
} | |
\usepackage{verbatim} | |
\begin{comment} | |
:Title: Oblique Incidence of TM Waves | |
:Tags: Decorations, Physics, Chemistry, & Optics | |
Reflection and refraction of electromagnetic TM-polarized wave incident obliquely at plane interface. | |
:Author: `Jimmy Touma`_ | |
.. _Jimmy Touma: https://gist.github.com/aitatanit/ff9eada5a51f946fc9941c6bfbdcb69a | |
\end{comment} | |
\begin{document} | |
\pagestyle{empty} | |
\begin{tikzpicture}[ | |
media/.style={font={\footnotesize\sffamily}}, | |
wave/.style={ | |
decorate,decoration={snake,post length=1.4mm,amplitude=2mm, | |
segment length=2mm},thick}, | |
interface/.style={ | |
% The border decoration is a path replacing decorator. | |
% For the interface style we want to draw the original path. | |
% The postaction option is therefore used to ensure that the | |
% border decoration is drawn *after* the original path. | |
postaction={draw,decorate,decoration={border,angle=-45, | |
amplitude=0.3cm,segment length=2mm}}}, | |
] | |
% Round rectangle | |
\fill[gray!10,rounded corners] (0,-4) rectangle (4,4); | |
% Interface | |
\draw[blue,line width=.5pt,interface](0,-4)--(0,4); | |
% horizontal dashed line | |
\draw[dashed,gray](-4,0)--(4,0); | |
% Coordinates system | |
\draw(-0.15,-0.15)node[below]{$y$}; | |
\draw[<->,line width=1pt] (2,0) node[below]{$z$}-|(0,2) node[left]{$x$}; | |
% Incidence | |
\draw[->,wave] | |
(225:3.9cm)--(225:3.2cm)node[above]{$k_i$}; | |
\draw[gray](0:0cm)--(225:3cm); | |
\path (0,0)++(205:1cm)node{$\phi_i$}; | |
\draw[->](-0.75,0)arc(180:225:.75cm); | |
\filldraw[fill=white,line width=1pt](-1.3,-1.3)circle(.15cm); | |
\filldraw[fill=black,line width=1pt](-1.3,-1.3)circle(.05cm); | |
\draw[->] (-1.3,-1.3) | |
+(-45:0cm) -- +(135:1cm)node[left]{$\vec{E_i}$}; | |
\draw(-1.3,-1.4)node[below]{$\vec{B_i}$}; | |
% Reflection | |
\draw[->,wave] | |
(135:3.2cm)--(135:3.9cm)node[above]{$k_r$}; | |
\path (0,0)++(155:1.3cm) node{$\phi_r$}; | |
\draw[gray](0:0cm)--(135:3cm); | |
\draw[->] (-1,0)arc(180:135:1cm); | |
\filldraw[fill=white,line width=1pt](-1.3,1.3)circle(.15cm); | |
\filldraw[fill=black,line width=1pt](-1.3,1.3)circle(.05cm); | |
\draw[->] (-1.13,1.3) | |
+(135:.12cm) -- +(215:1cm)node[above]{$\vec{E_r}$}; | |
\draw(-1.2,1.3)node[right]{$\vec{B_r}$}; | |
% Transmission | |
\draw[->,wave] | |
(30:3.1cm)--(30:3.9cm)node[right]{$k_t$}; | |
\draw[gray](0:0cm)--(30:3cm); | |
\path (0,0)++(15:1.3cm)node{$\phi_t$}; | |
\draw[->] (1,0) arc (0:30:1cm); | |
\filldraw[fill=white,line width=1pt](1.6,0.9)circle(.15cm); | |
\draw[->] (1.6,0.9) | |
+(-30:0cm) -- +(120:1cm)node[right]{$\vec{E_t}$}; | |
\draw(1.7,0.8)node[right]{$\vec{B_t}$}; | |
% Media names | |
\path[media] (-0.5,-3.5) node {$n_1$} | |
(0.6,-3.5) node {$n_2$}; | |
% $y$ axis | |
\filldraw[fill=white,line width=1pt](0,0)circle(.15cm); | |
\filldraw[fill=black,line width=1pt](0,0)circle(.05cm); | |
% Interface pointer | |
\draw[-latex,thick](-0.5,4)node[left]{$\mathsf{S_{1,2}}$} | |
to[out=0,in=90] (0,3.5); | |
% To-paths are really useful for drawing curved lines. The above | |
% to path is equal to: | |
% | |
% \draw[-latex,thick](3.2,0.5)node[right]{$\mathsf{S_{1,2}}$} | |
% ..controls +(180:.2cm) and +(up:0.25cm) .. (3,0); | |
% Internally the to path is translated to a similar bezier curve, | |
% but the to path syntax hides the complexity from the user. | |
\end{tikzpicture} | |
\end{document} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment