Last active
December 14, 2019 10:45
-
-
Save aiwithshekhar/b75e65d083c4a73d3129515d7685892e to your computer and use it in GitHub Desktop.
loading images & mask and use transformation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
'''when dataloader request for samples using index it fetches input image and target mask, | |
apply transformation and returns it''' | |
class CarDataset(Dataset): | |
def __init__(self,df,img_fol,mask_fol,mean,std,phase): | |
self.fname=df['img'].values.tolist() | |
self.img_fol=img_fol | |
self.mask_fol=mask_fol | |
self.mean=mean | |
self.std=std | |
self.phase=phase | |
self.trasnform=get_transform(phase,mean,std) | |
def __getitem__(self, idx): | |
name=self.fname[idx] | |
img_name_path=os.path.join(self.img_fol,name) | |
mask_name_path=img_name_path.split('.')[0].replace('train-128','train_masks-128')+'_mask.png' | |
img=cv2.imread(img_name_path) | |
mask=cv2.imread(mask_name_path,cv2.IMREAD_GRAYSCALE) | |
augmentation=self.trasnform(image=img, mask=mask) | |
img_aug=augmentation['image'] #[3,128,128] type:Tensor | |
mask_aug=augmentation['mask'] #[1,128,128] type:Tensor | |
return img_aug, mask_aug | |
def __len__(self): | |
return len(self.fname) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment