Last active
December 2, 2018 20:36
-
-
Save ajoydas/d51cc94b200657ab6869935cbdfb9185 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import numpy as np | |
eps = np.finfo(float).eps | |
from sklearn.metrics import accuracy_score | |
from sklearn import preprocessing | |
import time | |
a = 1 | |
mu = 0.05 | |
df_train = pd.read_csv('data/trainNN.txt', header=None, delimiter = '\s*') | |
df_test = pd.read_csv('data/testNN.txt', header=None, delimiter = '\s*') | |
df_train_y = pd.get_dummies(df_train[4]) | |
df_train_x = df_train.drop(4,axis = 1) | |
train_x = df_train_x.values | |
train_y = df_train_y.values | |
min_max_scaler = preprocessing.StandardScaler() | |
train_x = min_max_scaler.fit_transform(train_x) | |
col = np.ones(train_x.shape[0]).reshape(train_x.shape[0],1) | |
train_x = np.hstack((train_x, col)) | |
df_test_y = pd.get_dummies(df_test[4]) | |
df_test_x = df_test.drop(4,axis = 1) | |
test_x = df_test_x.values | |
test_y = df_test_y.values | |
test_x = min_max_scaler.transform(test_x) | |
col = np.ones(test_x.shape[0]).reshape(test_x.shape[0],1) | |
test_x = np.hstack((test_x, col)) | |
#test = df_test.values | |
def sigmoid(x): | |
return 1 / (1 + np.exp(-a*x)) | |
def sigmoid_der(x): | |
return a*sigmoid(x)*(1-sigmoid(x)) | |
layer = [train_x.shape[1], 3, 4, 5, train_y.shape[1]] | |
weight = [] | |
for i in range(len(layer)-1): | |
w = np.random.uniform(-1,1,(layer[i],layer[i+1])) | |
weight.append(w) | |
maxItr = 1000 | |
y = [] | |
v = [] | |
delta = [] | |
min_err = np.inf | |
best_w = [] | |
start = time.time() | |
for t in range(maxItr): | |
delw = [] | |
errs = 0 | |
for r in range(len(layer)-1): | |
delw.append([0]*layer[r+1]) | |
for i in range(train_x.shape[0]): | |
input = [train_x[i]] | |
y = [] | |
v = [] | |
for r in range(len(layer)-1): | |
w = weight[r] | |
out = np.matmul(input[r], w) | |
v.append(out) | |
out = sigmoid(out) | |
y.append(out) | |
input.append(out) | |
l = layer[-1] | |
errs += (0.5 * (y[l-1] - train_y[i])*(y[l-1] - train_y[i])).sum() | |
delta = [] | |
d = [] | |
for j in range(l): | |
ej = y[l-1][j] - train_y[i][j] | |
d.append(ej*sigmoid_der(v[l-1][j])) | |
delta.append(d) | |
for r in range(len(layer)-2, 0, -1): | |
d = [] | |
l = layer[r] | |
for j in range(l): | |
# print(str(r)+" "+str(j)) | |
dot = np.dot(delta[len(layer)-r-2], weight[r][j]) | |
d.append(dot*sigmoid_der(v[r-1][j])) | |
delta.append(d) | |
delta.reverse() | |
for r in range(len(layer)-1): | |
w = [] | |
l = layer[r+1] | |
for j in range(l): | |
# print(str(r)+" "+str(j)) | |
w = delta[r][j]*input[r] | |
delw[r][j] += w | |
for r in range(len(layer)-1): | |
l = layer[r+1] | |
for j in range(l): | |
# print(str(r)+" "+str(j)) | |
weight[r][:,j] = weight[r][:,j] - mu * delw[r][j] | |
if errs < min_err: | |
min_err = errs | |
best_w = weight | |
if t % 100 == 0: | |
print("Error ", errs, " Time: ", time.time() - start) | |
print("Training finished, time needed: ", time.time() - start) | |
weight = best_w | |
output = [] | |
for i in range(train_x.shape[0]): | |
input = [train_x[i]] | |
for r in range(len(layer)-1): | |
w = weight[r] | |
out = np.matmul(input[r], w) | |
out = sigmoid(out) | |
input.append(out) | |
print(input[len(layer)-1]) | |
output.append(input[len(layer)-1].argmax()+1) | |
score = accuracy_score(df_train.loc[:,4], output) | |
weight = best_w | |
output = [] | |
for i in range(test_x.shape[0]): | |
input = [test_x[i]] | |
for r in range(len(layer)-1): | |
w = weight[r] | |
out = np.matmul(input[r], w) | |
out = sigmoid(out) | |
input.append(out) | |
print(input[len(layer)-1]) | |
output.append(input[len(layer)-1].argmax()+1) | |
score = accuracy_score(df_test.loc[:,4], output) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment